Discovering New Physics With Non-Isolated Leptons

Chris Brust

Johns Hopkins University University of Maryland Perimeter Institute arXiv:1408.XXXX

- Leptons which are decay products of boosted objects fail isolation criteria
- Jets with hard leptons from boosted processes distinct from QCD
- Can we model-independently discriminate non-isolated leptons in signal vs background?

Also with Ian Anderson, Petar Maksimovic, Alice Sady, Prashant Saraswat, Matthew T. Walters, and Yongjie Xin

Boost 2014 – Aug. 19th University College London

Relative Isolation

Sum over cone of radius R_{cone}

• Standard relative isolation: $\mathcal{R}_{\mathrm{Iso}}^{\ell} = \frac{\sum_{i} p_{\mathrm{T}}^{i}}{p_{\mathrm{T}}^{\ell}}$

$$\mathcal{R}_{\mathrm{Iso}}^{\ell} = rac{\sum_{i} p_{\mathrm{T}}^{i}}{p_{\mathrm{T}}^{\ell}}$$

• Typically $\mathcal{R}_{\mathrm{Iso}}^{\ell} \lesssim 0.2$, $R_{\mathrm{cone}} \gtrsim 0.3$

Discards non-isolated leptons

Example of Missed Signal

Current Squark Exclusion Plot

Current Squark Exclusion Plot

Takeaway Message

- Non-isolated leptons are useful discriminants for new physics if...
 - ...we loosen or eliminate isolation criteria
 - ...we minimize background with cuts on hadronic activity
- Existence of a size parameter (e.g. isolation cone size) equals restricting range of boosts

Our Goals

 Develop and cut on model-independent observables

 They should distinguish hard-process leptons from leptons produced in QCD jets

Cutting Hard on Hadronic Activity

8 TeV relative isolation study

Demand:

- 4+ anti- k_{T} , R = 0.5 jets with p_{T} > 150 GeV

-
$$H_{T} > 850 \text{ GeV with } H_{T} = \sum_{j} p_{T}^{j} + \sum_{\ell} p_{T}^{\ell}$$

- 2+ leptons with $p_{\scriptscriptstyle T}$ > 40 GeV (no iso. req.!)

Relative Isolation of Hardest Lepton

Our Strategy

 Unlike relative isolation, they should exploit properties of all leptons, regardless of how boosted an object they came from

Our solution: Substructure with no built-in size parameter

Lepton Subjet Fraction

• Cluster *every* hadron and lepton in event into "fat jets" with C/A, R = 0.8

 For each fat jet, recluster constituents into n subjets with exclusive k_T – no size parameter!

• For each lepton, define LSF = $\frac{p_{T,\ell}}{p_{T,subjet}}$

Lepton Subjet Fraction (n = 3)

Select events with:

2+ jets, $p_{T} > 150 \text{ GeV}$ 1+ lepton, $p_{T} > 40 \text{ GeV}$

LSF₃ of Two Hardest Leptons

H₊ > 850 GeV

LSF₃ of Two Hardest Leptons

Highest LSF₃ vs 2nd Highest LSF₃

Our Proposed Search

- Cut on:
 - Two hardest leptons: $LSF_3 > 0.7$
- ...in addition to...
 - 4+ anti- $k_{_{\rm T}}$, R = 0.5 jets with $p_{_{\rm T}}$ > 150 GeV
 - 2+ leptons with $p_{T} > 40$ GeV (no iso. req.!)

$$-$$
 H_T > 850 GeV with $H_{\mathrm{T}} = \sum_{j} p_{\mathrm{T}}^{j} + \sum_{\ell} p_{\mathrm{T}}^{\ell}$

Results of Monte Carlo Study

Our Mock Search Compared

Looking Forward

- Results very broad not model-specific
- The community should:
 - Close gaps with 8 TeV data
 - Reconsider 13 TeV lepton triggers
 - Search for more refined discriminants of signal vs leptonic tops
 - Hope for the discovery of new physics!

Backup Slides

Lepton Mass Drop

- Cluster into C/A R = 0.8 fat jets
- Recluster constituents with exclusive k₊ into n subjets
- Lepton mass drop defined as mass of hadronic constituents of subjet over mass of entire subjet (including the hard lepton)

$$LMD = \frac{m_{sj-\ell}}{m_{sj}}$$

Highly correlated with LSF in large-boost limit 21

LMD vs LSF₃

2+ jets, $p_{T} > 150 \text{ GeV}$ 1+ lepton, $p_{T} > 40 \text{ GeV}$

Other Topologies

Other Topologies

Other Topologies

Exclusion Reach With Mock Search

Exclusion reach with LSF₃

Optimizing Relative Isolation Cut?

LSF₃ of Hardest & 2nd Hardest Leptons

LSF for Other Models @ 13 TeV

Relative Isolation in $R_{cone} = 0.1$

Clustering Jets Without Leptons

Relative Isolation with 1 TeV Squarks

LSF₃ of Hardest & 2nd Hardest Leptons

Highest LSF₃ vs 2nd Highest LSF₃

