Discovering New Physics With Non-Isolated Leptons

Chris Brust
arXiv:1408.XXXX

> Johns Hopkins University
> University of Maryland
> Perimeter Institute

- Leptons which are decay products of boosted objects fail isolation criteria
- Jets with hard leptons from boosted processes distinct from QCD
- Can we model-independently discriminate non-isolated leptons in signal vs background?

Also with Ian Anderson, Petar Maksimovic, Alice Sady, Prashant Saraswat, Matthew T. Walters, and Yongjie Xin

Boost 2014 - Aug. 19th University College London

Relative Isolation

Sum over cone of radius $\mathrm{R}_{\text {cone }}$

- Standard relative isolation: $\quad \mathcal{R}_{\mathrm{Iso}}^{\ell}=\frac{\sum_{i} p_{\mathrm{T}}^{i}}{p_{\mathrm{T}}^{2}}$
- Typically $\mathcal{R}_{\text {Iso }}^{\ell} \lesssim 0.2, \quad R_{\text {cone }} \gtrsim 0.3$

Discards non-isolated leptons

Example of Missed Signal

${ }_{0 \mathrm{Tev}} \perp-\tilde{\chi}_{0}$
Many other models, too!

Current Squark Exclusion Plot

Current Squark Exclusion Plot

Takeaway Message

- Non-isolated leptons are useful discriminants for new physics if...
- ...we loosen or eliminate isolation criteria
- ...we minimize background with cuts on hadronic activity
- Existence of a size parameter (e.g. isolation cone size) equals restricting range of boosts

Our Goals

- Develop and cut on model-independent observables
- They should distinguish hard-process leptons from leptons produced in QCD jets

Cutting Hard on Hadronic Activity

- 8 TeV relative isolation study
- Demand:
- 4+ anti- $\mathrm{k}_{\mathrm{T}}, \mathrm{R}=0.5$ jets with $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$
$-\mathrm{H}_{\mathrm{T}}>850 \mathrm{GeV}$ with $H_{\mathrm{T}}=\sum_{j} p_{\mathrm{T}}^{j}+\sum_{\ell} p_{\mathrm{T}}^{\ell}$
- $2+$ leptons with $p_{T}>40 \mathrm{GeV}$ (no iso. req.!)

Relative Isolation of Hardest Lepton

Plot is stacked

Our Strategy

- Unlike relative isolation, they should exploit properties of all leptons, regardless of how boosted an object they came from

Our solution:

Substructure with no built-in size parameter

Lepton Subjet Fraction

- Cluster every hadron and lepton in event into "fat jets" with C/A, R = 0.8
- For each fat jet, recluster constituents into n subjets with exclusive k_{T} - no size parameter!
- For each lepton, define $\mathrm{LSF}=\frac{p_{T, \ell}}{p_{T, \text { subjet }}}$

Lepton Subjet Fraction (n = 3)

8 TeV LHC

Select events with:
$2+$ jets, $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$
$1+$ lepton, $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$

LSF_{3} of Two Hardest Leptons

Squark-Neutralino Model $m_{\tilde{q}}=1000 \mathrm{GeV}, m_{\tilde{\chi}}=100 \mathrm{GeV}$

$$
\begin{gathered}
\text { 4+ jets, } \mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV} \\
\text { 2+ leptons, } \mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV} \\
\mathrm{H}_{\mathrm{T}}>850 \mathrm{GeV}
\end{gathered}
$$

LSF $_{3}$ of Two Hardest Leptons

Squark-Neutralino Model $m_{\tilde{q}}=1000 \mathrm{GeV}, m_{\tilde{\chi}}=100 \mathrm{GeV}$

Semileptonic \bar{t}

$$
\begin{gathered}
\text { 4+ jets, } \mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV} \\
\text { 2+ leptons, } \mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV} \\
\mathrm{H}_{\mathrm{T}}>850 \mathrm{GeV}
\end{gathered}
$$

Highest LSF ${ }_{3}$ vs $2^{\text {nd }}$ Highest LSF

Our Proposed Search

- Cut on:
- Two hardest leptons: $\mathrm{LSF}_{3}>0.7$
- ...in addition to...
- 4+ anti- $\mathrm{K}_{\mathrm{T}}, \mathrm{R}=0.5$ jets with $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$
- $2+$ leptons with $p_{T}>40 \mathrm{GeV}$ (no iso. req.!)
$-\mathrm{H}_{\mathrm{T}}>850 \mathrm{GeV}$ with $H_{\mathrm{T}}=\sum_{j} p_{\mathrm{T}}^{j}+\sum_{\ell} p_{\mathrm{T}}^{\ell}$

Results of Monte Carlo Study

Our Mock Search Compared

Looking Forward

- Results very broad - not model-specific
- The community should:
- Close gaps with 8 TeV data
- Reconsider 13 TeV lepton triggers
- Search for more refined discriminants of signal vs leptonic tops
- Hope for the discovery of new physics!

Backup Slides

Lepton Mass Drop

- Cluster into C/A R = 0.8 fat jets
- Recluster constituents with exclusive k_{T} into n subjets
- Lepton mass drop defined as mass of hadronic constituents of subjet over mass of entire subjet (including the hard lepton)

$$
\mathrm{LMD}=\frac{m_{s j-\ell}}{m_{s j}}
$$

- Highly correlated with LSF in large-boost limit ${ }^{21}$

LMD vs LSF 3

Squark-LSP Model $m_{\tilde{q}}=1000 \mathrm{GeV}, m_{\tilde{\chi}}=20 \mathrm{GeV}$

Select events with:
$2+$ jets, $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$
$1+$ lepton, $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$

Other Topologies

Other Topologies

Other Topologies

Exclusion Reach With Mock Search

Optimizing Relative Isolation Cut?

LSF $_{3}$ of Hardest $\& 2^{\text {nd }}$ Hardest Leptons

LSF for Other Models @ 13 TeV

Relative Isolation in $\mathrm{R}_{\text {cone }}=0.1$

Clustering Jets Without Leptons

Relative Isolation with 1 TeV Squarks

LSF $_{3}$ of Hardest $\& 2^{\text {nd }}$ Hardest Leptons

Highest LSF ${ }_{3}$ vs $2^{\text {nd }}$ Highest LSF

