Boost 2014, UCL (London)

Q-Jets in SCET: from Q-thrust to Q-(sub)jettiness

Andrew Hornig LANL Aug 18, 2014

classical (deterministic) substructure analyses

#1: find jet

classical (deterministic) substructure analyses

classical (deterministic) substructure analyses

classical (deterministic) substructure analyses

♦ Q-Jets: use "all" clusterings ⇒ mass distribution for each jet

* different for different algorithms:

- Variation larger for QCD jets (no real m_J scale)
 - ⇒ "Volatility":

$$\mathcal{V} = \Gamma/\langle m \rangle$$

$$\Gamma \equiv \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$$

Results from Last Year

* compare to standard candle (N-subjettiness):

* BOOST2013 working groups: understand correlations

Why are Q-Jets different?

* 2 reasons:

- 1. NOT deterministic: probabilistic assignments
- 2. NOT energy-flow variable (event/jet shape): fundamentally iterative (depends on clustering, not just particle 4-momenta)

* Can we understand differences analytically?

Q-Jet Volatility Calculation (?)

- non-trivial mass Q-dists require at least O(10) particles
 - \Rightarrow need $O(\alpha^{10})$ calculation....

- also not well-suited for resummation in SCET
- * both related to fact that Q-jets is recursive/iterative....

What can we Calculate?

- energy-flow (non-iterative) easier
- * are probabilistic observables possible/sensible?
- * if calculable, what is effect on Non-Global Logs? (important in general, but esp. substructure)

define Q-thrust (then on to Q-(sub)jettiness)

* cluster L, R with some probability:

$$\delta(\tau_L - k^+/Q)\Theta\left(\theta < \frac{\pi}{2}\right)$$

$$\to P_L(\theta)$$

$$+\delta(\tau_R - k^-/Q)\Theta\left(\theta > \frac{\pi}{2}\right)$$

$$\to P_R(\theta)$$

- * disentangle Q-Jets/N-subjettiness (un)correlation???
 - 1. non-deterministic (like traditional Q-Jets)
 - 2. but now energy-flow/shape var

* probability conservation:

$$P_L(\theta) + P_R(\theta) = 1$$

* IR safety:

$$P_L(0) = P_R(\pi) = 1$$

* symmetry (not needed):

$$P_{L,R}(\theta) = 1 - P_{L,R}(\pi - \theta)$$

* Examples:

* Examples:

* Examples:

- definition for higher orders IR safety:
 - * must use clustering!
 - * IR safety requires (in collinear limit):
 - before splitting:after splitting:

$$P_L(\begin{picture}(100,0) \put(0,0){\limit} \pu$$

* definition for higher orders

* definition for higher orders

* factorization (for $R \sim 1$):

$$\frac{d\sigma}{d\tau_Q} = \int d\tau_L \, d\tau_R \, \delta(\tau_Q - \tau_L - \tau_R) \, \frac{d\sigma}{d\tau_L \, d\tau_R}$$

$$\frac{d\sigma}{d\tau_L \ d\tau_R} = H(E_{cm}) \ J(\tau_L) \otimes J(\tau_R) \otimes S_Q(\tau_L, \tau_R) \qquad \qquad R \qquad \pi - R$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
incl. jet fnc.
$$S_Q(\tau_L, \tau_R) = \frac{1}{N_C} \operatorname{Tr} \langle 0 | \overline{Y}_{\bar{n}}^{\dagger}(0) Y_n^{\dagger}(0) \ \mathcal{O}(\tau_L, \tau_R) Y_n(0) \overline{Y}_{\bar{n}}(0) | 0 \rangle$$

Inspiration for observable from Q-Jets:

$$=\sum_{i}\omega(\mathrm{tree}_{i})\delta(\mathcal{O}-\hat{\mathcal{O}}(\mathrm{tree}_{i}))$$

$$\Rightarrow \mathcal{O}(\tau_L, \tau_R) = \sum_i \left[P_L(k_i) \delta(\tau_L - k_i^+/Q) \delta(\tau_R) + P_R(k_i) \delta(\tau_L) \delta(\tau_R - k_i^-/Q) \right]$$

* NGLs in soft function?

Non-Global Logs (classical)

Dasgupta, Salam hep-ph/0104277 Kelley, Schwartz, Schabinger, Zhu 1105.3676 AH, Lee, Stewart, Walsh, Zuberi 1105.4628

Non-Local Globs (classical)

$$-f_{\rm OR}(R_R, R_L) \ln^2 \frac{\mu^2 \tan(R_R/2)}{2\Lambda k_R}$$

$$f_{\text{OR}}^{\text{cone}}(R_R, R_L) = \underbrace{\int_{\eta_R}^{\infty} d\eta_1 \int_{-\eta_L}^{\eta_R} d\eta_2 \frac{8}{e^{2(\eta_1 - \eta_2)} - 1}}$$

1 in R, 2 outside

largest when 1,2 both approach boundary

(Soft) Clustering NGLs (classical)

* anti- k_T \rightarrow only clusters soft when $\Delta\theta \sim E \sim \lambda^2$ $\lambda^2 \zeta$

 \Rightarrow cone and anti- k_T don't have clustering logs

total NGLs (including clustering)	C_F^2 (pure clustering): Kelley, Walsh, Zuberi 1202.2361	C_FC_A : AH, Lee, Walsh, Zuberi 1110.0004
anti-k _T : (soft last)	0	Sum of NGL coefficients 3.5 3.0 anti-k _T
C/A: (democratic in angle)	non-zero	$ \begin{array}{c cccc} \widehat{\mathscr{Z}} & 2.0 \\ & & \downarrow^{g_p} \mathscr{Z} & 1.5 \\ & & \downarrow^{1.0} & & & & & \\ & & & & \downarrow^{1.0} & & & \\ & & & & & \downarrow^{1.0} & & & \\ & & & & & & \downarrow^{1.0} & & & \\ & & & & & & \downarrow^{1.0} & & & \\ & & & & & & \downarrow^{1.0} & & & \\ & & & & & & \downarrow^{1.0} & & & \\ & & & & & & \downarrow^{1.0} & & & \\ & & & & $
k _T : (soft first)	non-zero and bigger	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 R

* *Note*: while C/A and k_T induce C_F^2 NGLs, clustering reduces C_FC_A NGLs

1 Loop Results

- * jet function = inclusive (up to $O(\tau/R)$)
- * same γ_s (soft anom dim) as thrust
- * soft function has finite shift:

$$\Delta S^{(1)}(\tau) = -4\delta(\tau) \frac{\alpha_s C_F}{\pi} \int_0^1 \frac{d\cos\theta}{1 - \cos^2\theta} \ln\tan\frac{\theta}{2} [P_L(\theta) - 1] \qquad \text{(shift per hemi)}$$

$$= -\delta(\tau) \times \begin{cases} \frac{\pi^2}{12} & \\ \ln^2 \tan\frac{R}{2} & \\ \frac{\pi^2}{12} & \frac{\pi^2}{12} & \\ \frac{\pi^2}{12} & \frac{\pi^2$$

2 Loop Results

* after adding clustering, same as thrust $\gamma_s^{(2)}$

$$\mathcal{M} = \delta_L^{12} \delta^R f_1^L f_2^L + \delta_1^L \delta_2^R f_1^L f_2^R + (L \leftrightarrow R)$$

$$\to \delta_L^{12} \delta^R f_1^L f_2^L + \delta_1^L \delta_2^R f_1^L f_2^R (1 - f_{1,2}^{\text{clu}}) + \delta_{12}^L \delta^R f_{1+2}^L f^R f_{1,2}^{\text{clu}} + (L \leftrightarrow R)$$

- * C_F² (can separate soft clustering)
 - * $S^{(2)}(x, y) = 1/2(S^{(1)}(x,y))^2 + clustering$
- * C_FC_A (IR safety \Rightarrow don't separate clustering effect)
 - w/ clustering, all divergences cancel -> left with different (finite) NGLs

2 Loop Results

"fuzzy" region ~ 1 - a clustering size ~ δ < 1 - a clustering region ~ Δ > 1 - a

* Cancellation of NGLs:

$$\delta = 1 - a$$
 (cluster everything in fuzzy region)

Conclusions and Outlook

* Q-thrust:

- * non-deterministic *but* energy-flow variable
- * calculable!
- * interesting (important?) effect on NGLs!
- generalizes naturally to Q-(sub)jettiness

* Outlook:

- performance & correlations
- many related observables to study, should exhibit same generic properties (calculability and NGLs)