Q-Jets in SCET:
 from Q-thrust to Q-(sub)jettiness

What is a "Q-Jet"?

* classical (deterministic) substructure analyses

\# 1: find jet

What is a "Q-Jet"?

* classical (deterministic) substructure analyses

\# 2: cluster into trees
(depends on algorithm)

What is a "Q-Jet"?

* classical (deterministic) substructure analyses

"Mass Drop+Filter"

Butterworth, Davison,
Rubin, Salam
(0802.2470)
"Pruning"
Ellis, Walsh, Vermilion (0912.0033)
"Trimming"
Krohn, Thaler, Wang
(0912.1342)

What is a "Q-Jet"?

* classical (deterministic) substructure analyses

\# 3: get "groomed" m_{J}

"Mass Drop+Filter" Butterworth, Davison, Rubin, Salam (0802.2470)
"Pruning"
Ellis, Walsh, Vermilion (0912.0033)
"Trimming"
Krohn, Thaler, Wang
(0912.1342)
* Q-Jets: use "all" clusterings \Rightarrow mass distribution for each jet

What is a "Q-Jet"?

* different for different algorithms :

* Variation larger for QCD jets (no real m_{J} scale)
\Rightarrow "Volatility":

$$
\begin{aligned}
& \mathcal{V}=\Gamma /\langle m\rangle \\
& \Gamma \equiv \sqrt{\left\langle m^{2}\right\rangle-\langle m\rangle^{2}}
\end{aligned}
$$

Results from Last Year

* compare to standard candle (N-subjettiness):

Thaler, Tilburg 1011.2268

* BOOST2013 working groups: understand correlations

Why are Q-Jets different?

* 2 reasons:

1. NOT deterministic: probabilistic assignments
2. NOT energy-flow variable (event/jet shape): fundamentally iterative (depends on clustering, not just particle 4-momenta)

* Can we understand differences analytically?

Q-Jet Volatility Calculation (?)

* non-trivial mass Q-dists require at least $\mathrm{O}(10)$ particles

\Rightarrow need $\mathrm{O}\left(\alpha^{10}\right)$ calculation....

* also not well-suited for resummation in SCET
* both related to fact that Q-jets is recursive/iterative....

What can we Calculate?

* energy-flow (non-iterative) easier
* are probabilistic observables possible / sensible?
* if calculable, what is effect on Non-Global Logs? (important in general, but esp. substructure)
\Rightarrow define Q-thrust (then on to Q-(sub)jettiness)

Q-Thrust

* cluster L, R with some probability:

$$
\begin{array}{r}
\delta\left(\tau_{L}-k^{+} / Q\right) \underbrace{\Theta\left(\theta<\frac{\pi}{2}\right)}_{\rightarrow P_{L}(\theta)} \\
+\delta\left(\tau_{R}-k^{-} / Q\right) \underbrace{\Theta\left(\theta>\frac{\pi}{2}\right)}_{\rightarrow P_{R}(\theta)}
\end{array}
$$

* disentangle Q-Jets / N-subjettiness (un)correlation???

1. non-deterministic (like traditional Q-Jets)
2. but now energy-flow/shape var

Q-Thrust

* probability conservation:

$$
P_{L}(\theta)+P_{R}(\theta)=1
$$

* IR safety:

$$
P_{L}(0)=P_{R}(\pi)=1
$$

* symmetry (not needed):

$$
P_{L, R}(\theta)=1-P_{L, R}(\pi-\theta)
$$

Q-Thrust

* Examples:

Q-Thrust

* Examples:

Q-Thrust

* Examples:

Q-Thrust

* definition for higher orders - IR safety:
* must use clustering!
* IR safety requires (in collinear limit):
* before splitting:
* after splitting:

Q-Thrust to Q-(sub)jettiness

* definition for higher orders

Q-Thrust to Q-(sub)jettiness

* definition for higher orders

Q-Thrust to Q-(sub)jettiness

* definition for higher orders "fuzzy" region \sim R

Q-Thrust to Q-(sub)jettiness

Q-Thrust

* factorization (for R ~ 1):

$$
\begin{aligned}
& \frac{d \sigma}{d \tau_{Q}}=\int d \tau_{L} d \tau_{R} \delta\left(\tau_{Q}-\tau_{L}-\tau_{R}\right) \frac{d \sigma}{d \tau_{L} d \tau_{R}} \\
& \frac{d \sigma}{d \tau_{L} d \tau_{R}}=H\left(E_{\mathrm{c} m}\right) J\left(\tau_{L}\right) \otimes J\left(\tau_{R}\right) \otimes S_{Q}\left(\tau_{L}, \tau_{R}\right) \\
& \uparrow \uparrow \uparrow \\
& \text { incl. jet fnc. } \quad S_{Q}\left(\tau_{L}, \tau_{R}\right)=\frac{1}{N_{C}} \operatorname{Tr}\left\langle\left(0\left|\bar{Y}_{\bar{n}}^{\dagger}(0) Y_{n}^{\dagger}(0) \mathcal{O}\left(\tau_{L}, \tau_{R}\right) Y_{n}(0) \bar{Y}_{\bar{n}}(0)\right| 0\right\rangle\right.
\end{aligned}
$$

* Inspiration for observable from Q-Jets:

$$
\begin{aligned}
& \Rightarrow \mathcal{O}\left(\tau_{L}, \tau_{R}\right)=\sum_{i}\left[P_{L}\left(k_{i}\right) \delta\left(\tau_{L}-k_{i}^{+} / Q\right) \delta\left(\tau_{R}\right)+P_{R}\left(k_{i}\right) \delta\left(\tau_{L}\right) \delta\left(\tau_{R}-k_{i}^{-} / Q\right)\right]
\end{aligned}
$$

* NGLs in soft function?

Non-Global Logs (classical)

Non-Local Globs (classical)

$-f_{\mathrm{OR}}\left(R_{R}, R_{L}\right) \ln ^{2} \frac{\mu^{2} \tan \left(R_{R} / 2\right)}{2 \Lambda k_{R}}$

$f_{\mathrm{OR}}^{\text {cone }}\left(R_{R}, R_{L}\right)=\underbrace{\int_{\eta_{R}}^{\infty} d \eta_{1} \int_{-\eta_{L}}^{\eta_{R}} d \eta_{2} \underbrace{\frac{8}{e^{2\left(\eta_{1}-\eta_{2}\right)}-1}}_{\text {largest when } 1,2 \text { both }}}_{1 \text { in } \mathrm{R}, 2 \text { outside }}$ approach boundary

(Soft) Clustering NGLs (classical)

* anti- $\mathrm{k}_{\mathrm{T}} \rightarrow$ only clusters soft when $\Delta \theta \sim \mathrm{E} \sim \lambda^{2}$
\Rightarrow cone and anti- k_{T} don't have clustering logs

* Note: while C / A and k_{T} induce $\mathrm{C}_{\mathrm{F}}{ }^{2}$ NGLs, clustering reduces $\mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{A}}$ NGLs

1 Loop Results

* jet function = inclusive (up to $\mathrm{O}(\tau / \mathrm{R})$)
* same γ_{s} (soft anom dim) as thrust
* soft function has finite shift:

$$
\Delta S^{(1)}(\tau)=-4 \delta(\tau) \frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{1} \frac{d \cos \theta}{1-\cos ^{2} \theta} \ln \tan \frac{\theta}{2}\left[P_{L}(\theta)-1\right]
$$

$$
=-\delta(\tau) \times\left\{\begin{array}{c}
\frac{\pi^{2}}{12} \\
\ln ^{2} \tan \frac{R}{2}
\end{array}\right.
$$

$$
P_{L}(\theta)=\frac{1+\cos \theta}{2}
$$

2 Loop Results

* after adding clustering, same as thrust $\gamma_{s}{ }^{(2)}$

$$
\begin{gathered}
\mathcal{M}=\delta_{L}^{12} \delta^{R} f_{1}^{L} f_{2}^{L}+\delta_{1}^{L} \delta_{2}^{R} f_{1}^{L} f_{2}^{R}+(L \leftrightarrow R) \\
\rightarrow \delta_{L}^{12} \delta^{R} f_{1}^{L} f_{2}^{L}+\delta_{1}^{L} \delta_{2}^{R} f_{1}^{L} f_{2}^{R}\left(1-f_{1,2}^{\text {clu }}\right)+\delta_{12}^{L} 2^{R} f_{1+2}^{L} f^{R} f_{1,2}^{\text {clu }}+(L \leftrightarrow R)
\end{gathered}
$$

- $\mathrm{C}_{\mathrm{F}}{ }^{2}$ (can separate soft clustering)
- $S^{(2)}(x, y)=1 / 2\left(S^{(1)}(x, y)\right)^{2}+$ clustering
* $\mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{A}}$ (IR safety \Rightarrow don't separate clustering effect)
* w / clustering, all divergences cancel -> left with different (finite) NGLs

2 Loop Results

$$
\begin{gathered}
\text { "fuzzy" region } \sim 1-\mathrm{a} \\
\text { clustering size } \sim \delta<1-\mathrm{a} \\
\text { clustering region } \sim \Delta>1-\mathrm{a}
\end{gathered}
$$

$$
a \equiv \tan ^{2} \frac{R}{2}
$$

- Cancellation of NGLs:

$$
\delta=1-a
$$

(cluster everything in fuzzy region)

Conclusions and Outlook

- Q-thrust:
* non-deterministic but energy-flow variable
* calculable!
* interesting (important?) effect on NGLs!
* generalizes naturally to Q-(sub)jettiness
* Outlook:
* performance \& correlations
* many related observables to study, should exhibit same generic properties (calculability and NGLs)

