PileUp Per Particle Id

Philip Harris (CERN) Nhan Tran(FNAL), Daniele Bertolini(MIT), Matthew Low(Chicago)

2

arxiv hep-ph/1407.6013

PileUp Per Particle Id

Philip Harris (CERN) Nhan Tran(FNAL), Daniele Bertolini(MIT), Matthew Low(Chicago)

Whats the deal with Pileup?

Simplified event can be decomposed into 5 different objects. We have tools to go after all

^{*}Fast calorimeter timing may also be possible

More Realistic Pileup

Tackling the ambiguous cases is just as critical A large amount of methods exist on the market

More Realistic Pileup

Challenge of isolating PU from a jet garnered much interest Builds on the building blocks outlined before

Inside of a Jet

KeyGood TrackPU TrackGood NeutPU Neut

Hard scatter is clumpy

Methods take advantage of its clumpiness

Per Particle density subtraction

Inside of a Jet

Key

- Good Track
- PU Track
- Good Neut
 - PU Neut

Shape of a jet

Contains info about PU

Global

Pileup Subtraction Swiss Army Knife

Jet Shape Info

Global p MVA MET JA(F) *MET*

Jet Grooming Differential p **HF/Vorinoi** Safe Subtraction

NpC Cleansing Pileup Jet ID

Local

Vertexing (CHS) **Timing** Const. Subtraction Depth Segmentation **TopoClustering**

Pileup Subtraction Swiss Army Knife

Pileup Subtraction Swiss Army Knife

How does Puppi work?

General Idea of the Algorithm

- Use the Jets without Jets paradigm
 - For each particle draw a cone around it
- In each particle cone
 - Compute metric α
 - Distinguishes particle from hard scatter from PU
 - Calculate median α and $\alpha_{_{\rm RMS}}$ over an event for PU
 - Average over all particles associated to another vertex
- Compute a weight that a particle is from pileup
- Reweight particles and re-interpret the event

Key

- Good Track
- PU Track
- Good Neut
- PU Neut
- Chosen
- Removed

Step 1 Run CHS

Key

- Good Track
- PU Track
- Good Neut
- PU Neut
- Chosen
- Removed

Step 1
Run CHS
Step 2
Draw a cone
Step 3
Remove all 0 values

Key

- Good Track
- PU Track
- Good Neut
- PU Neut
- Chosen
- Removed

Step 1
Run CHS
Step 2
Draw a cone
Step 3
Remove all 0 values

Step 4

Reweight Neutrals by weight factor

After Puppi

Key

- Good Track
- PU Track
- Good Neut
- PU Neut
- Chosen
- Removed

Step 5
Re-interpret evt
(Re-cluster)

Before Puppi

How to make pileup attractive?

For each particle consider in a cone :

Regulate the scales

Cone size to sum over 2 free parameters R

What to Sum Over?

For each particle consider in a cone :

$$\log \sum \frac{pTj}{\Delta R_{ij}}$$
 $j \in ext{Charged Leading Vertex}$

When vertexing exists (Central Region)

Sum over charged particles from leading vertex:

26

What to Sum Over?

For each particle consider in a cone :

$$\frac{1}{\Delta R_{ij}} \frac{PTj}{\Delta R_{ij}}$$

When no tracking + vertex exists (Forward Region)
Sum over all particles:

 $\alpha_{_{\rm F}}$

Is this the Best Metric?

For each particle consider in a cone :

We have considered many options
There are many more to consider

How does it look like?

Metric gives a per particle separation of pileup Take advantage of this distribution event by event

Use charged particles from other vertices as PU

Event Level Interpretation

Approximate the shape of pileup as χ^2 distribution

$$\chi_i^2 = \Theta(\alpha_i - \bar{\alpha}_{PU}) \times \frac{(\alpha_i - \bar{\alpha}_{PU})^2}{\sigma_{PU}^2}$$

Event Level Interpretation

Translate distribution into a weight*

$$w_i = F_{\chi^2, \text{NDF}=1}(\chi_i^2) \longrightarrow p_i^{\text{New}} = w_i p_i$$

ie shower deconstruction*

How to make pileup attractive?

For each particle consider in a cone :

A test for guilt by Association

Is this the best metric?

08/21/14 32

Puppi Results

Understanding Puppi requires some real life experience

Setup For Studies

- MC :
 - Pythia 8.176 di-jet events float $p_{\scriptscriptstyle T}$ 15-500 @ 14 TeV
 - PU 20-140 (in bins of 15)
- Detector :
 - Particle-flow like scenario
 - Tracking with $|\eta| < 2.5$
 - Perfect tracking
 - All particles with $|\eta| < 5$
 - Neutrals reconstructed in Cells
 - ΔηχΔφ of 0.1x0.1
 - $p_{_{\rm T}} > 0.1 \,{\rm GeV}$
 - AK7 Jets

Tunable Parameters

- 1. Cone size to sum over
- 2. Cut on the re-weighted p_{τ}

central: $p_{T,\text{cut}} = 0.1 \text{ GeV} + n_{\text{PU}} \times 0.007 \text{ GeV}$

forward: $p_{T,\text{cut}} = 0.2 \text{ GeV} + n_{\text{PU}} \times 0.011 \text{ GeV}$

Details for this study

3. Cut on weight $w_1 > 0.1$

 ΔR

 $0.02 < \Delta R < 0.3$

3 tunable parameters

Setup Continued

- LV : Particles from the leading vertex
- PF: Take all particles in event
- PF+CHS : Removed charged PU w/|η|<2.5
- Puppi :
 - Particles with $|\eta| < 2.5$ apply α_{c}
 - Particles with $|\eta| > 2.5$ apply $\alpha_{_F}$
- For PF and PF+CHS
 - Apply 4 vector ρ x a safe subtraction
 - Recalculate ρ_{CHS} for CHS particles $|\eta| < 2.5$

Recap

- Draw a cone around each particle
- Compute

$$\alpha_i^C = \log \sum_{j \in \text{Ch,LV}} \xi_{ij} \Theta(R_{\min} \le \Delta R_{ij} \le R_0), \qquad \xi_{ij} = \frac{p_{Tj}}{\Delta R_{ij}}$$

$$\alpha_i^F = \log \sum_{j \in \text{Ch,LV}} \xi_{ij} \Theta(R_{\min} \le \Delta R_{ij} \le R_0).$$

For event compute median,RMS→weight

$$\begin{split} \bar{\alpha}_{\text{PU}}^F &= \text{median}\{\alpha_{i \in \text{Ch}, \text{PU}}^F\}, \qquad \sigma_{\text{PU}}^F = \text{RMS}\{\alpha_{i \in \text{Ch}, \text{PU}}^F\} \\ \bar{\alpha}_{\text{PU}}^C &= \text{median}\{\alpha_{i \in \text{Ch}, \text{PU}}^C\}, \qquad \sigma_{\text{PU}}^C = \text{RMS}\{\alpha_{i \in \text{Ch}, \text{PU}}^C\} \\ w_i &= F_{\chi^2, \text{NDF}=1}(\chi_i^2) \qquad \chi_i^2 = \Theta(\alpha_i - \bar{\alpha}_{\text{PU}}) \times \frac{(\alpha_i - \bar{\alpha}_{\text{PU}})^2}{\sigma_{\text{PU}}^2} \\ \bullet \text{ Apply some cut on weight and re-weighted } \boldsymbol{p}_{\tau} \end{split}$$

central: $p_{T,\text{cut}} = 0.1 \text{ GeV} + n_{\text{PU}} \times 0.007 \text{ GeV}$

forward: $p_{T,\text{cut}} = 0.2 \text{ GeV} + n_{\text{PU}} \times 0.011 \text{ GeV}$

Re-interpret the event

08/21/14 38

Performance of Pileup Jets

P_{τ} Resolution From PU

Impact of pileup on the pT resolution considerably reduced

P_{τ} Performance From PU

Response is flat over p_{τ} Resolution is better over p_{τ}

Mass Performance

Mass Resolution is greatly improved Mass Response is flat over pT

Performance Over Pileup

Performance over PU is reduced Particularly strong for jet Mass

Puppi Usage Outside of Jets

- iPuppi:
 - Isolation w/puppi-weighted particles $iPuppi = \sum_{_{\Lambda R}} w_{_{i}} p_{_{Ti}}$
- Pupp E_{τ}

Further Extensions

- χ^2 to weight approach is very generic
 - Used to extend with experimental approaches
 - Fast Timing

- A more complicated scheme MVA?!
 - aka Puppies
- An analytic understanding of best metric
 - IRC safety due to ΔR_{min}

Conclusions

- Demonstrated a new approach to pileup subtraction
 - Good performance on jet properties
 - Both Jet p_{τ} and Jet Mass

- Works on the per-particle level
 - Clustering and event variables can be performed after
- Puppi is not set in stone
 - Framework for pileup approaches

Give the puppi a bone!

Thanks!

Jeff Berryhill, Matteo Cacciari, Dinko Ferencek, David Krohn, Andrew Larkoski, Filip Moortgat, Salvatore Rappoccio, Gavin Salam, Matthew Schwartz, Gregory Soyez, Jesse Thaler, and Lian-Tao Wang

Special thanks to PU Workshop

Ariel Schwartzmann, Filip Moortgat, Gavin Salam

08/21/14

08/21/14 4

08/21/14 50

Bibliography

• MVA *MET* : CMS-PAS-12-002

• Topoclustering/MET : ATLAS-CONF-2014-019

• ρ : hep-ph/0707.1378

Diffferential ρ : hep-ph/1211.2811

• JVF : ATLAS-CONF-2014-018

• PU Jet Id : CMS-PAS-13-005

Cleansing : hep-ph/1309.4777

• HF/Voronoi : CMS-DP-2013-018

NpC/Safe Subtractor : hep-ph/1404.7353

Constituent subtraction : hep-ph/1403.3108

Jet Grooming and Puppi

Puppi Grooming is possible and works well

More Realistic Pileup

53

