#### The Boost13 Working Group Report

Boost14

University College London, 18-22<sup>nd</sup> August 2014



Ben Cooper (UCL)

On behalf of the Boost13 working group

### The Boost Reports Series

Eur. Phys. J. C (2011) 71:1661 DOI 10.1140/epjc/s10052-011-1661-y THE EUROPEAN PHYSICAL JOURNAL C

Boost2010 Report

Special Article - Tools for Experiment and Theory

Boosted objects: a probe of beyond the standard model physics\*

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 39 (2012) 063001 (44pp)

doi:10.1088/0954-3899/39/6/063001

Boost2011 Report

TOPICAL REVIEW

Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks\*

Eur. Phys. J. C (2014) 74:2792 DOI 10.1140/epjc/s10052-014-2792-8 THE EUROPEAN
PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

Boost2012 Report

Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012

### The Boost Reports Series

And now...Boost2013

#### Towards an Understanding of the Correlations in Jet Substructure

Report of BOOST2013, hosted by the University of Arizona,  $12^{th}$ - $16^{th}$  of August 2013.

```
D. Adams<sup>1</sup>, A. Arce<sup>2</sup>, L. Asquith<sup>3</sup>, M. Backovic<sup>4</sup>, T. Barillari<sup>5</sup>, P. Berta<sup>6</sup>, D. Bertolini<sup>2</sup>, A. Buckley<sup>8</sup>, J. Butterworth<sup>9</sup>, R. C. Camacho Toro<sup>10</sup>, J. Caudron<sup>9</sup>, Y.-T. Chien<sup>11</sup>, J. Cogan<sup>12</sup>, B. Cooper<sup>9</sup>, D. Curtin<sup>17</sup>, C. Debenedetti<sup>18</sup>, J. Dolen<sup>9</sup>, M. Eklund<sup>22</sup>, S. El Hedri<sup>22</sup>, S. D. Ellis<sup>22</sup>, T. Embry<sup>22</sup>, D. Ferencek<sup>23</sup>, J. Ferrando<sup>24</sup>, S. Fleischmann<sup>16</sup>, M. Freytsis<sup>25</sup>, M. Giulini<sup>21</sup>, Z. Han<sup>27</sup>, D. Hare<sup>4</sup>, P. Harris<sup>4</sup>, A. Hinzmann<sup>4</sup>, R. Hoing<sup>4</sup>, A. Hornig<sup>22</sup>, M. Jankowiak<sup>4</sup>, K. Johns<sup>28</sup>, G. Kasieczka<sup>23</sup>, T. Knight<sup>24</sup>, G. Kasieczka<sup>29</sup>, R. Kogler<sup>30</sup>, W. Lampl<sup>4</sup>, A. J. Larkoski<sup>4</sup>, C. Lee<sup>31</sup>, R. Leone<sup>31</sup>, P. Loch<sup>31</sup>, D. Lopez Mateos<sup>27</sup>, H. K. Lou<sup>27</sup>, M. Low<sup>27</sup>, P. Maksimovic<sup>32</sup>, I. Marchesini<sup>32</sup>, S. Marzani<sup>32</sup>, L. Masetti<sup>33</sup>, R. McCarthy<sup>32</sup>, S. Menke<sup>32</sup>, D. W. Miller<sup>35</sup>, K. Mishra<sup>36</sup>, B. Nachman<sup>32</sup>, P. Nef<sup>4</sup>, F. T. O'Grady<sup>24</sup>, A. Ovcharova<sup>23</sup>, A. Picazio<sup>37</sup>, C. Pollard<sup>38</sup>, B. Potter Landua<sup>29</sup>, C. Potter<sup>29</sup>, S. Rappoccio<sup>39</sup>, J. Rutherfoord<sup>40</sup>, G. P. Salam<sup>10,11</sup>, J. Schabinger<sup>23</sup>, A. Schwartzman<sup>4</sup>, M. D. Schwartz<sup>27</sup>, B. Shuve<sup>43</sup>, P. Sinervo<sup>44</sup>, D. Soper<sup>45</sup>, D. E. Sosa Corral<sup>45</sup>, M. Spannowsky<sup>32</sup>, E. Strauss<sup>34</sup>, M. Swiatlowski<sup>4</sup>, J. Thaler<sup>34</sup>, C. Thomas<sup>34</sup>, E. Thompson<sup>1</sup>, N. V. Tran<sup>36</sup>, J. Tseng<sup>36</sup>, E. Usai<sup>36</sup>, L. Valery<sup>36</sup>, J. Veatch<sup>23</sup>, M. Vos<sup>23</sup>, W. Waalewijn<sup>4</sup>, and C. Young<sup>47</sup>
```

## Arriving at the Scope of this Report

| Topic                                                                                             | Volunteers                                                                                               |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Systematic comparisons of MC generators to all available unfolded experimental data (using Rivet) | Andy Buckley<br>Marat Freytsis                                                                           |
| Analytical calculations vs MC vs data? New measurements?                                          | James Ferrando                                                                                           |
| Systematic study of taggers/observables (correlations etc)                                        | Nhan Viet Tran<br>Andreas Hinzmann<br>Pekka Sinervo<br>Gregor Kasieczka<br>Jesse Thaler<br>Emanuele Usai |

| Topic                                                                                                               | Volunteers                                                                                              |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Explore performance of<br>observables/taggers and<br>MC generator<br>comparisons at much<br>higher boosts (1-2 TeV) | Brain Shuve Marcel Vos David Lopez (H->bb) Ben Nachman Andy Buckley Sebastian Fleischmann Lucia Masetti |
| Comment on Snowmass                                                                                                 | James Dolen                                                                                             |
| Prospects for analytical calculations at high pT                                                                    | Simone Marzani                                                                                          |

- After Boost13 discussion session we had a number of topics...
- ...but final scope determined largely by the interests of those people
  with time to work on the report, and what can realistically be done
  with the limited manpower/computing resources available.

# 2014 Report Overview

- A systematic exploration of the correlations/overlap/complementarity between different groomed jet mass definitions and substructure variables in the context of:
  - W tagging
  - Top tagging (including HTT and John Hopkins tagging algorithms)
  - q/g discrimination
- Exploration of correlations done largely through examining the ROC curves for BDT combinations of the groomed masses/variables.
  - If two variables are strongly correlated the BDT combination ROC will not improve on the single variable ROC curves. Variables which do not share a lot of information will improve in combination.
- Correlations and performance are explored as a function of anti-k<sub>T</sub> jet radius and jet p<sub>T</sub>, going beyond p<sub>T</sub> > 1 TeV.

### 2014 Report Overview

- We are not trying to make quantitative statements about which groomed mass + variable combination makes the best tagger
  - No pile-up.
  - No detector simulation/emulation.
  - No rigorous comparison between generators.
- But statements on the correlations, and how these evolve with different p<sub>T</sub> and R, should not be too dependent on these factors.

# W-tagging Studies

All studies by Nhan Viet Tran

Fastjet 3.03 jet framework used

# W-Tagging MC Samples

- All samples at  $\sqrt{s} = 8$  TeV using the CTEQ6L1 PDF.
- QCD background samples:
  - Madgraph5 + Pythia8 (Tune 4C).
  - Only pp→gg samples used (will check results with qq).
  - Generated in exclusive parton p<sub>T</sub> bins, with additional cut on leading (ungroomed) jet.
- Resonant (scalar) X→WW→qqqq signal samples:
  - JHU Generator + Pythia8 (Tune 4C).
  - Generated in exclusive in W p<sub>T</sub> bins, with additional cut on leading (ungroomed) jet.
- Exclusive p<sub>T</sub> bins generated:
  - 300-400 GeV, 500-600 GeV, 1.0-1.1 TeV.
- Range of anti-K<sub>T</sub> jet radii used R=0.4, 0.8, 1.2.

### Single Variables: Mass



R=0.8, p<sub>T</sub> 500-600 GeV

-ww

gg

Z

0.1







- Fixed grooming parameters used.
- No optimization of grooming parameters.

# Single Variables: Substructure



### **ROC Curves**



R=0.8, p<sub>T</sub> 500-600 GeV



- Clearly much to be gained from combining the variables...
- ...but combinations produced too many ROC curves to digest!



 Background rejection at signal efficiency of 50% for each combination of variable (and for single variables along the diagonal).

12

Individually groomed masses are more powerful discriminants



R=0.8, p<sub>T</sub> 500-600 GeV





Combinations of substructure variables are not as powerful



R=0.8, p<sub>T</sub> 500-600 GeV





There is complementary information between the different groomed masses



R=0.8, p<sub>T</sub> 500-600 GeV

There is complementary information between the different groomed masses

and between the groomed masses and ungroomed mass. Grooming cuts out some useful information!



R=0.8, p<sub>T</sub> 500-600 GeV

# Dependence on p<sub>T</sub>



- As p<sub>T</sub> increases the power of the groomed masses stays relatively constant (up to x 2)
- But the power of mass+substructure combination increases dramatically.
  - Addition of substructure information increasingly important to get best tagging at higher p<sub>T</sub>.



# Dependence on p<sub>T</sub>



- Individual power of C2 increases dramatically with increased  $p_T$ .
- But individual power of  $\tau_{21}$  and  $\Gamma_{Qjet}$  gets worse.
- Interesting differences in the performance of mass+shape taggers, especially evident at higher p<sub>T</sub>.



### Dependence on R



- Again, individual power of groomed masses stays relatively constant.
- But dramatic changes in the power of substructure variables as R changes.
  - At R=0.4 and 0.8 C<sub>2</sub> is by far the most powerful...
  - ...but this all changes for R=1.2. τ<sub>21</sub>
     becomes most powerful in combination.
- Power of groomed mass + shape taggers varies substantially with jet radius.



### Main Conclusions from W Tagging

- Individually, groomed masses are more powerful discriminants than the substructure variables examined:
  - Exception to this is  $C_2^{\beta=1}$ , as powerful as groomed masses for R=0.4, R=0.8.
  - Groomed mass power does not vary too much with p<sub>T</sub> or R.
- Taggers should be built from a combination of groomed mass + substructure variable:
  - Great improvements in rejection power, especially at high p<sub>T</sub>.
  - Performance of combined taggers improves with  $p_T$ ....
  - ...but varies substantially with jet radius R.
  - Most performant substructure variable depends on R
    - For R=0.8 it is C<sub>2</sub>
    - For R=1.2 it is  $\tau_{21}$
  - Different substructure variables prefer to be used in combination with different groomers e.g. C<sub>2</sub> best with m<sub>sd</sub><sup>β=2</sup>

# Top tagging Studies

All studies by Brian Shuve

Fastjet 3.03 jet framework used

# Top Tagging MC Samples

- All samples at √s = 14 TeV.
- Three different exclusive p<sub>T</sub> bins:
  - 600-700 GeV, 1-1.1 TeV and 1.5-1.6 TeV.
- QCD background samples:
  - Sherpa 2.0.0,  $2 \rightarrow 2+2$  generation (both qq and gg).
  - p<sub>T</sub> cut on leading parton-level jet p<sub>T</sub>.
- All-hadronic ttbar samples:
  - Sherpa 2.0.0
  - p<sub>T</sub> cut on top/anti-top p<sub>T</sub>.

## Top Tagging Options Explored

- Study the performance of the following Top tagging strategies:
  - HepTopTagger (HEP)
  - John Hopkins Tagger (JH)
  - Trimming & Pruning
- First compare the "mass" performance of these taggers.
  - Across different p<sub>T</sub> bins, with different jet radii (R=0.4,0.8,1.2).
- Then investigate adding shape information:
  - n-subjettiness ( $\tau_{21}$  and  $\tau_{32}$ )
  - ECF ratios (C<sub>2</sub> and C<sub>3</sub>)
  - Qjet volatility

# "Mass" Tagging

#### HEP and JH taggers:

- Output (when tagging requirements pass) a Top mass (m<sub>top</sub>) and
   W mass (m<sub>W</sub>) hypothesis, as well as a helicity angle.
- We study the performance when m<sub>top</sub>, m<sub>W</sub> and helicity angle are combined in a BDT...(similar to Boost2011 report).
- Trimming/Pruning "mass" top tagging works as follows:
  - $m_{top} =$ the full groomed jet mass.
  - $-m_W$  = lowest mass pair (if >=3 subjets) or highest mass subjet (if ==2 subjets).
  - Combine m<sub>top</sub> and m<sub>W</sub> in a BDT discriminant.

### **Continuous Optimisation**



 For each point on each ROC curve the tagger "inputs" are scanned over to give the optimal background rejection at that efficiency.

**HEPTopTagger:** 
$$m \in [30, 100] \text{ GeV}, \mu \in [0.5, 1]$$
  
**JH Tagger:**  $\delta_p \in [0.02, 0.15], \delta_R \in [0.07, 0.2]$   
**Trimming:**  $f_{\text{cut}} \in [0.02, 0.14], R_{\text{trim}} \in [0.1, 0.5]$   
**Pruning:**  $z_{\text{cut}} \in [0.02, 0.14], D_{\text{cut}} \in [0.1, 0.6]$ 

### Tagger Performance

- All approaches are similar in performance.
- JH appears to perform slightly better than HEP.
- Trimming slightly better than pruning.



p<sub>T</sub> 1000-1100 GeV bin, R=0.8

### Correlations Between Taggers

- The JH tagger can be improved by BDT combination of the JH outputs with the HEP tagger outputs.
- There is complementary information in the outputs of these taggers!



p<sub>T</sub> 1000-1100 GeV bin, R=0.8

# **Shape-Only Performance**



 Jet shape/substructure variables not as powerful as the ungroomed mass.

# Adding Shape Information



- Use BDT from m<sub>top</sub>, m<sub>W.</sub> helicity and single (or all) shape variable(s).
- Both HEP and JH are complimented by additional shape info...

# Adding Shape Information



- Use BDT from m<sub>top</sub>, m<sub>W</sub> and single (or all) shape variable(s).
- Trimming and pruning complimented by shapes also.

## Adding Shape Information

p<sub>T</sub> 1000-1100 GeV bin, R=0.8



 Performance of the various strategies very close after adding all shape information (at least all explored here).

# HEP p<sub>T</sub> dependence (R=0.8)

















Compare performance of taggers in different p<sub>T</sub> bins (each p<sub>T</sub> bin individually optimised).

In all taggers,
optimal
performance
stays fairly
constant with p<sub>T</sub>.

## HEP R dependence ( $p_T = 1.5 \text{ TeV}$ )



--- HEP.R.0.4

HEP.R.0.8

Compare tagger performance as a function of jet radius in the most boosted bin.

HEP.R.1.2

— HEP\_shape.R.0.4

Taggers prefer smaller jet radius (as also observed in W-tagging)

----- HEP\_shape.R.0.8

HEP\_shape.R.1.2

#### **Optimization Transfer Studies**



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

— JH.pT.600

Individually optimised in each  $p_T$  bin

JH.pT.1000

JH.pT.1500

JH.pT.1500

Only optimised in the p<sub>T</sub> 1.5 TeV bin. Performance is very similar!

JH.pT.1000

— JН.рТ.600

#### Optimization Transfer Studies



— JH.R.0.4

Individually optimised for each jet radius

JH.R.0.8

JH.R.1.2



JH.R.1.2

---- JH.R.0.8

— JH.R.0.4

Only optimised for R=1.2. Performance is very similar!

#### Main Conclusions Top Tagging

- When optimising over all inputs HEP, JH, trimming and pruning "mass" taggers can produce similar Top tagging performance.
  - Performance does not vary strongly with p<sub>T</sub>, but does vary strongly with R (lower R preferred).
  - There is complementary information between these taggers.
- All of the "mass-based" taggers can be improved using additional shape information.
  - Performance of taggers becomes very close when shape added.
  - C2/C3 and tau21/tau32 are most complementary to trimming/ pruning.

# Summary

#### Report Status

#### Towards an Understanding of the Correlations in Jet Substructure

Report of BOOST2013, hosted by the University of Arizona, 12<sup>th</sup>-16<sup>th</sup> of August 2013.

```
D. Adams<sup>1</sup>, A. Arce<sup>2</sup>, L. Asquith<sup>3</sup>, M. Backovic<sup>4</sup>, T. Barillari<sup>5</sup>, P. Berta<sup>6</sup>, D. Bertolini<sup>2</sup>, A. Buckley<sup>8</sup>, J. Butterworth<sup>9</sup>, R. C. Camacho Toro<sup>10</sup>, J. Caudron<sup>9</sup>, Y.-T. Chien<sup>11</sup>, J. Cogan<sup>12</sup>, B. Cooper<sup>9</sup>, D. Curtin<sup>17</sup>, C. Debenedetti<sup>18</sup>, J. Dolen<sup>9</sup>, M. Eklund<sup>22</sup>, S. El Hedri<sup>22</sup>, S. D. Ellis<sup>22</sup>, T. Embry<sup>22</sup>, D. Ferencek<sup>23</sup>, J. Ferrando<sup>24</sup>, S. Fleischmann<sup>16</sup>, M. Freytsis<sup>25</sup>, M. Giulini<sup>21</sup>, Z. Han<sup>27</sup>, D. Hare<sup>4</sup>, P. Harris<sup>4</sup>, A. Hinzmann<sup>4</sup>, R. Hoing<sup>4</sup>, A. Hornig<sup>22</sup>, M. Jankowiak<sup>4</sup>, K. Johns<sup>28</sup>, G. Kasieczka<sup>23</sup>, T. Knight<sup>24</sup>, G. Kasieczka<sup>29</sup>, R. Kogler<sup>30</sup>, W. Lampl<sup>4</sup>, A. J. Larkoski<sup>4</sup>, C. Lee<sup>31</sup>, R. Leone<sup>31</sup>, P. Loch<sup>31</sup>, D. Lopez Mateos<sup>27</sup>, H. K. Lou<sup>27</sup>, M. Low<sup>27</sup>, P. Maksimovic<sup>32</sup>, I. Marchesini<sup>32</sup>, S. Marzani<sup>32</sup>, L. Masetti<sup>33</sup>, R. McCarthy<sup>32</sup>, S. Menke<sup>32</sup>, D. W. Miller<sup>35</sup>, K. Mishra<sup>36</sup>, B. Nachman<sup>32</sup>, P. Nef<sup>4</sup>, F. T. O'Grady<sup>24</sup>, A. Ovcharova<sup>23</sup>, A. Picazio<sup>37</sup>, C. Pollard<sup>38</sup>, B. Potter Landua<sup>29</sup>, C. Potter<sup>29</sup>, S. Rappoccio<sup>39</sup>, J. Rutherfoord<sup>40</sup>, G. P. Salam<sup>10,11</sup>, J. Schabinger<sup>23</sup>, A. Schwartzman<sup>4</sup>, M. D. Schwartz<sup>27</sup>, B. Shuve<sup>43</sup>, P. Sinervo<sup>44</sup>, D. Soper<sup>45</sup>, D. E. Sosa Corral<sup>45</sup>, M. Spannowsky<sup>32</sup>, E. Strauss<sup>34</sup>, M. Swiatlowski<sup>4</sup>, J. Thaler<sup>34</sup>, C. Thomas<sup>34</sup>, E. Thompson<sup>1</sup>, N. V. Tran<sup>36</sup>, J. Tseng<sup>36</sup>, E. Usai<sup>36</sup>, L. Valery<sup>36</sup>, J. Veatch<sup>23</sup>, M. Vos<sup>23</sup>, W. Waalewijn<sup>4</sup>, and C. Young<sup>47</sup>
```

- A lot of material already in the report.
  - Current draft is 58 pages, with 62 figures!
- More work needed to distill the plots and fill in the text.
- Nothing shown here on q/g tagging plots produced but not digested.
- Aiming to wrap this up by Autumn/Fall (meaning journal submission).

#### Summary

- The Boost13 Report systematically examines the complementarity and overlap in different tagging approaches, and how this changes as a function of p<sub>T</sub> and jet radius, for W, Top and q/g tagging.
- Hopefully it can be instructive for both phenomenological and experimental communities.
  - What is there left to exploit?
  - How can we build a better tagger?
- Expect a complete first draft in next 4 weeks.

# Backups

## Dependence on $p_T$ (R=0.8)



- As p<sub>T</sub> increases the power of the groomed masses stays relatively constant (up to x 2)
- But the power of mass+substructure combination increases dramatically.
  - Addition of substructure information increasingly important to get best tagging at higher p<sub>T</sub>.



## Dependence on $p_T$ (R=1.2)



- C2 loses power relative to the other variables as p<sub>T</sub> increases.
- Tau21 is the most powerful variable in combination at all p<sub>T</sub> when using R=1.2.



## Single Variable m<sub>top</sub> Performance



- Just using the reconstructed top mass for discrimination.
- Trimming and pruning perform very comparably.
- JH outperforms HEP.

# Single Variable m<sub>top</sub> Performance

p<sub>T</sub> 1500-1600 GeV bin, R=0.8

Top: A particular optimised point on the ROC, where full 3 variable (m<sub>top,</sub> m<sub>W</sub>, helicity) BDT is used in discrimination

Bottom: A particular optimised point on the ROC, where m<sub>top</sub> only is used in discrimination



- The HEP sculpts the QCD mass distribution to look more like Top.
  - Due to selection of subjet "triplet" closest to Top mass.
- Therefore you don't get such a good Top mass discrimination.

#### Single Variable Performance



- Just using the reconstructed W mass for discrimination (except "jmass" curve, which always uses ungroomed full jet mass)
- Trimming is better than pruning here (very close to JH).
- JH again outperforms HEP.

## JH p<sub>T</sub> dependence (R=0.8)



— JH.pT.600

---- JH.pT.1000

JH.pT.1500

JH\_shape.pT.600

JH performance improves very slightly with p<sub>T</sub>

----- JH\_shape.pT.1000

JH\_shape.pT.1500

# Trimming p<sub>T</sub> dependence (R=0.8)



## Pruning p<sub>T</sub> dependence (R=0.8)



# JH R dependence ( $p_T = 1.5 \text{ TeV}$ )



#### Prune R dependence (1.5 TeV)



### Trim R dependence (1.5 TeV)

