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New Physics Searches

Rely heavily on one object
that QCD doesn’t directly produce

Gives parametric control of QCD background




Why are we waiting for discovery®

Signals could be just out of reach

s there something that we’'re missing?

One dark corner;
Hadronic Final States

Missing usual
handles to control

QCD




Baryonic R-Parity Violation

—viscerates MET

/d29 N/ USDEDS

Makes LSP decay

to 3 quarks (most LSPS)
to 2 quarks (squark LSPs)

(one quark could be top = +2))

Increases multiplicity significantly



The Classic Susy Signature
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The Less-Classic Susy Signature

10+ Partons no MET

NV




The Less-Classic Natural Susy Signature
18" Partons

Still some MET from W decays, but much less
Don’t want to pay SSDL branching ratio (lepton isolation is hard)



Main Point:

Many signals of new physics
produce lots of final state quarks or gluons

—asy to come up with other signals
with high multiplicity signals

Don’t want to have a dedicated
search for every possiblility

Want to use the multiplicity to distinguish
SM from BSM



Need a handle to distinguish

Normal QC

D Multijet

3SM Multiiet




Fat Jets

Fat Jets Coarse Grain the Phase Space

Easy to construct inclusive kinematic signals using fat jets

Thin Jets are great at determining multiplicity,
but constructing meaningful variables
out of a heterogeneous high dimensionful space is hard

|[dentity high multiplicity based
upon Fat Jet observables




Truth Of QCD Multijets
Many QCD Multijets are glorified Dijets

O

Requiring 3 or 4

-at Jets
in QCD

IS a serious reduction
rate

4 Fat jets isreally a 2 = 4 process
6 Thin jets is dominated by 2 = 2 + parton showering



Still need to distinguish

Signal Background




The difference between them Is clear

Large Invariant Mass  Small Invariant Mass

T 5 T 5
1~ 1 —4 ~ 0.3
PT pPr

More jet substructure Less jet substructure



INntroduce Jet Observables

Sum of Jet Masses

Ny
MJ — E mjn
n=1

QCD jets have most of their mass generated
by the parton shower

Top events have their mass capped near 400 GeV



Subjettiness

Jet mass is the coarsest measure of jet substructure

—qual pT and mass jets

o O
VEIrSUS O o

Massive QCD jets mostly have 2 subjets

High multiplicity signals are more subjets

Used kT method of counting subjets (1302.1870)



1 00%

More than a Mass Cut

-raction o

- Jets with Nsubjets

100 - 200 GeV

| 0%
| %6
0.1%
0.01%

0.0

0.2 04

0.6 0.8 .0

m/ pT

W N —



o(tb)/25GeV

100.

e
Dn O
=A==

O
Lo

4 Fat Jets, pr > 100 GeV

Aller ET > 150 GeV

My Distribution

0

1 } V+jets |

g E=unat |

L T Misc .
4 %—Iﬁl

— = L
| T

= T

200 400 600 800



o
100.0. - Vijets
i | |
500
- Misc
eﬁ 100 —
= 50 —
S - -
1.0 —
0.5 -
0 5 10 15

4 Fat Jets, pr > 100 GeV
After £+ > 150 GeV & My > 280 GeV

Ny Distribution W




Improvements of Ny vs My only Search
Fr>125GeV  M;>425GeV Ny > 14
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Variables are Great

. but Monte Carlos can™

' reproduce

all of jet substruct

How to get backgro

ure

unds?

Particularly challenging when
variables are correlated



Jet Factorization

QCD jets only have small correlations

Data driven background predictions possible

fzmj/pT

Pg(iEl, L9, 5133) ~ P1 (CEl)Pl (ZCQ)Pl (5173)

Pi: Probability of a jet with m/pr = X
Ps. Probabillity of getting 3 jets with X1, X2, X3

Measure in one sample and extrapolate

Also can use other control regions (MET/leptons/bjets)



Natural

Data-

Driven” approach to backgrounds

Measure P;(x;pr) in diets, use in multijets

Predict event-by-event acceptances

(probability an event passes cut)

A(pTlapT%pTS):/ d>x  Pi(x1;p71)Pi(x2:pr2)Pi(23;p13)

MJ >Mcut

Differential acceptance rate as a function of the kinematic variables

Can make an My prediction based upon the events measured

Don’t need to be able to calculate My distribution

from first principles



The Basic [dea of Jet Templates

Training Sample Kinematic Sample

Z,
%
(?Z‘e /




More Formally

k are kinematic variables X are substructure variables

d*Nio (Z;, ki, )

d...dZ, dk; ...dky;,




More Formally

k are kinematic variables X are substructure variables

dQNja(fialzi)) . dea(Ki) = .
dzy...dZy,dk;...dky,  dk;...dky,

p(zla e fNj Ela °°°7kNj)



More Formally

k are kinematic variables X are substructure variables

dNig (%, k;,)  dVio(k;)
dz...d7y,dk;...dky,  dk;...dky,

p(iEl, ceny fNj El, °--7kNj)

Approximate the multivariate joint distribution function
as independent distribution functions

de o) EZ . . — =) deU Ez al N P
— (—*) p(ajl) °°°7xNj k17 °°'7kNj) — — (—*) pz(wz‘kz) .
dk;...dky; dk;...dky; 323



MEASURING THE TEMPLATES

Getting the central value is easy
Getting error bars is hard

Used Kernel Smoothing

Take every event and replace its properties
with a Gaussian

What is o ?



CHOOGSING THE BANDWIDTH

Two separate errors arise in any procedure like this

Variance & Bias

If you choose o too small, then there
IS a lot of statistical noise

If you choose o too big, then there
the distribution systematically moves away from the true one

Jet Mass Templates (o, = 400 GeV)
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OPTIMAL BANDWIDTH

— )

Typically chosen by “AMISE

(asymptotic mean integrated square error)

AMISE(o) = /dm (po(m) — p(m; U))2

Can prove lots of things about this



OPTIMAL BANDWIDTH

— )

Typically chosen by “AMISE

(asymptotic mean integrated square error)

AMISE(o) = /dm (po(m) — p(m; U))2

Can prove lots of things about this

Sut minimizing this is not the right thing to do

Variance is a Gaussian distribution

Bias is not, has non-Gaussian tails



OPTIMAL BANDWIDTH

— )

Typically chosen by “AMISE

(asymptotic mean integrated square error)

AMISE(o) = /dm (po(m) — p(m; U))2

Can prove lots of things about this

Sut minimizing this is not the right thing to do

Variance is a Gaussian distribution

Bias is not, has non-Gaussian tails

Want Variance to dominate over Bias
AMISE is a relatively function of bandwidth

Want to “undersmooth” the distribution



BIAS-CORRECTED TEMPLATES

Can measure the bias and correct for it at leading order
Distributions are Gaussian, with width 1 and centered at O
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Explicit Validation

Control Region Signal Region

| Leading 2 Jets of 4-Jet Events
Exclusive 2-Jets Events

Test 2 Variables

My =m(j1) + m(j2) Ty ” = T21(J1) T21(J2)



(pb / 100 GeV)

J

do
dMm

Works well in Monte Carlo

Take Exclusive Dijets and apply it to leading 2 jets in 4-Jet events

< 10% systematic differences

T, <0.3 |Ldt = 1 o M, > 250 GeV |Ldt = 1 o
: S 4
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Minimally, jets in MC have less information,
can get more mileage with smaller MC calculations



Works similarly well in Search Regions

pt=p"| —log = To1, In T
O\ pp ) = 200 GeV

C Mj cut |GeV] | Ty cut MC Template £ 6y + 05
0.37 500 0.3 20.3 £ 2.2 19.2 + 2.3 £ 0.6
0.52 750 0.3 0.86 &= 0.10 | 0.96 == 0.19 4 0.05
0.37 500 0.0 45.8 £ 3.5 452 £ 3.7 &£ 1.3
0.52 750 0.0 1.67 =0.14 | 1.90 £ 0.19 £ 0.13

Always under-smoothed to make the calculated bias
smaller than the expected variance dominate



Did this have to work?

No! A non-trivial check
For instance, Quark vs Gluon Jets

Quarks: Gluons:
Smaller Color, Less radiation Bigger Color, More radiation

Full Dijet Sample is

P12(T1, T2) = CyqPqq(T1, Ta) + CagPaq(T1, T2) + CoqPgq(T1, T2) + CggPgq(T1, T2),

Approximating by

p(T1, T2) = p(Z1)p(Z2)

Cqg T Cyq

)= (s ) g+ (2 52) )




Desperately Seeking Correlations

Have seen no evidence yet of correlations

Look at samples with different compositions

2 Jets 3 Jets 4 Jets
]00%5 © 1()()%? ° ° ° ° ]00%5 ® ° ° ° °
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[ [ [ GGG
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50 100 200 400 800 1600 ’ 50 100 200 400 800 1600 ’ 50 100 200 400 800 1
pr Cut on All Jets (GeV) pr Cut on All Jets (GeV) pr Cut on All Jets (GeV)

Leading 2 jets similar enough in composition between 2Jets & 4Jets

Using single template on all 4 jets doesn’t work

Schwartz & Gallichio 2012



Q vs G Distributions Are Different

Have similar shapes and compositions cancel

Jet Mass Template (p; = 200 GeV) 7,,Template (p; = 200 GeV)
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Follow up work will use multiple templates

Apply to 3rd and 4th Jets



Higher Jets Saw Larger Deviations

Transition from Quark Dominated Jets to Gluon Dominated Jets

Could hope to regress out the different compositions

Look at samples with different compositions

2 Jets 3 Jets 4 Jets
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Schwartz & Gallichio 2012



Outlook

High Multiplicity Signals are Challenging
But Powerful Signal

M, & Ny are powerful new tools to separate
new physics from QCD

Novel approaches to backgrounds exist
using Jet Factorization approximation

Learning how to have low background

searches without M

=



Thank You!

Boosted Community has been great to me

Grown from the small group in 2009
to this 115 person conference In its 6th iteration



