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Figure 11. Comparison of Monte Carlo (left panels) and analytic results (right panels) for the
modified mass-drop tagger (mMDT). The upper panels are for quark jets, the lower panels for gluon
jets. Three values of ycut are illustrated, while µ is always taken to be 0.67 (its precise value has no
impact on the results, as long as it is not substantially smaller than this). The details of the MC
event generation are as for Fig. 1.

tagger deserves further investigation in view of possibly becoming the main recommended

variant of mMDT.13

7.5 Interplay with filtering

The mass-drop tagger is often used together with a filtering procedure, which reduces

sensitivity to underlying event and pileup. In its original incarnation a filtering radius Rfilt

13This would of course leave “modified Mass Drop Tagger” as a somewhat inappropriate name!
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FIG. 5. Distribution of the total fractional energy loss �E

after soft drop for quark jet (top) and gluon jets (bottom)
over a range of pT values. “LL” is the distribution computed
from Eq. (8), with the appropriate Bi factors for quark and
gluon jets.

The � = 0 distribution in Eq. (8) is fascinating. In
the fixed-coupling limit, it is independent of ↵s. This
implies that the distribution is only weakly dependent
on the energy scale of the jet (i.e. it is quasi-conformal),
with all dependence suppressed by the (small) �-function
of QCD. It is also independent of the total color of the
jet, and so the distribution should be nearly identical for
quark and gluon jets, with the dependence on the flavor
of the jet entering from the subleading Bi terms. This
illustrates some of the surprising features of Sudakov safe
observables: because their distributions are not required
to be a Taylor series in ↵s, they can have peculiar depen-
dence on the coupling.

We can use parton shower simulations to test the de-
gree to which �E is independent of the jet scale and jet
flavor. We generated dijet events over a range of trans-
verse momenta at a 100 TeV collider. Unlike the previous
sections, we do not include pileup in this analysis, so as
to isolate the physics of the soft drop procedure on the
perturbative radiation in the jet. We plot the distribu-
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FIG. 6. Same as Fig. 5, but for the maximum fractional
energy loss z

max

.

tion of �E in Fig. 5 and z

max

in Fig. 6 on anti-kT jets
with radius R

0

= 0.5 for pure quark and gluon jet sam-
ples.7 The pT of the jets ranges from 1 TeV to 20 TeV,
and the distributions at di↵erent pT lie on top of one an-
other, until very small values of �E or z

max

, where hon-
est non-perturbative e↵ects dominate. Also, the quark
and gluon distributions are remarkably similar, except
for large values of �E where subleading perturbative ef-
fects are important. On these plots, we have also included
the calculated distribution from Eq. (8), appropriate for
quark or gluon jets. Especially for z

max

, the leading-
logarithmic prediction nicely matches the parton shower.
As expected from the discussion of multiple emissions
above, Eq. (8) gives a better prediction for the distribu-
tion of z

max

than �E , especially for values near z
cut

.

7 The quark jets come from qq ! qq and the gluon jets from
gg ! gg. We ignore any subtleties regarding sample dependence
or the precise definition of jet flavor.
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Assumption #1:
At high energies, QCD is (approximately) a 

conformal field theory
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Assumption #2:
At high energies, the dynamics of QCD is 
dominated by soft and collinear emissions
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Figure 5: Illustration of the interpolation of the logarithmic structure between the bound-

aries of the phase space. Collinear logarithms (log e1/�� ) always interpolate between the jet

functions defined on the boundaries and soft logarithms (log e↵) always interpolate between

the soft functions. kT logarithms (log e
1��
↵��
↵ e

↵�1
↵��

� ) interpolate between the double di↵erential

jet and soft functions.

captures the logarithms to any formal accuracy in the bulk of the phase space and so match-

ing the resummed double di↵erential cross section to the fixed-order cross section would be

meaningless. However, making some reasonable assumptions about the structure of the log-

arithms in the bulk of the phase space, we will argue that the boundary conditions on the

cumulative cross section are su�ciently strong to enforce the uniqueness of the interpolation

up to O(↵4

s).

To prove this, we assume that the logarithms in the bulk of the phase space exponentiate.

Then, the true double cumulative cross section to logarithmic accuracy can be written as

log ⌃(e↵, e�) = log ⌃
int

(e↵, e�) +
1
X

n=4

fn (log e↵, log e�)
n�2

X

i=2

cni logi
e↵
e�

logn�i
e↵�

e�↵
, (6.40)

where ⌃
int

(e↵, e�) is the interpolation cross section that satisfies all of the boundary condi-

tions. To NLL accuracy, the function fn is

fn (log e↵, log e�) =
1
X

m=0

m
X

j=0

�

d1nmj↵
n+m�1

s + d2nmj↵
n+m
s

�

logj e↵ logm�j e� , (6.41)

where d1nmj and d2nmj are coe�cients, independent of ↵s. We assume that the logarithms in fn
cannot be rewritten in such a way that factors of

log
e↵
e�

, log
e↵�

e�↵

exist. That is, all dependence on these logarithms has been explicitly factored out in Eq. (6.40).

Because we assume that the interpolation cross section ⌃
int

(e↵, e�) satisfies all bound-

ary conditions, the second term, corresponding to interpolation-violating contributions, must
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Let’s now apply power counting to boosted Z boson 
discrimination with the energy correlation functions
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Figure 9: Left: the discrimination curves for boosted hadronic Z bosons (m
Z

= 91 GeV)

compared to QCD jets with C
(�)

2

for various values of �. The transverse momentum of

all jets was required to lie in the range of [400, 500] GeV. Right: QCD rejection rate for

50% boosted Z e�ciency as a function of �, sweeping the value of the Z boson mass to

m
Z

= {80, 91, 110, 125, 150, 200} GeV. The optimal value of � depends strongly on the

resonance mass.

values of C
(�)

2

correspond to 2-subjet-like jets, the C
(�)

2

distribution moves to lower values as

the mass of a QCD jet increases, as shown in Fig. 8a for � = 2 in the p
T

range [400, 500] GeV.20

In contrast, for a boosted heavy particle that decays to two partons, the C
(�)

2

distribution is

relatively insensitive to the resonance mass, since the mass of such a jet comes mostly from

two partons from the decay regardless of the boost factor. Shown in Fig. 8b is the signal C
(2)

2

distribution for pp ! ZZ, where one of the Z bosons decays to leptons and the other decays

to jets. We can manually adjust the mass of the Z in MadGraph5 to study several di↵erent

mass to transverse momentum ratios. For m
Z

= {91, 125, 200} GeV, the C
(2)

2

distributions

are remarkably similar.21

In Fig. 9a, we show the QCD jet versus Z boson discrimination curve for m
Z

= 91 GeV

with p
T

2 [400, 500] GeV for several values of �. To see how the physics changes as the

resonance mass changes, we plot the QCD rejection rate for 50% boosted Z e�ciency in

Fig. 9b as a function of �, for m
Z

= {80, 91, 110, 125, 150, 200} GeV. At low masses, the most

powerful discriminant is � ' 1.5 � 2. This is expected, since large values of � emphasize soft

wide-angle emissions where there is more of a penalty for QCD jets in the Sudakov peak.

However, we do not have a quantitative way to understand why the discrimination power

20The labelled jet masses of mZ = {80, 91, 110, 125, 150, 200} GeV correspond to the jet mass ranges

[70, 90] GeV, [80, 100] GeV, [100, 120] GeV, [110, 140] GeV, [140, 170] GeV, and [180, 230] GeV.
21C2 is not invariant to transverse boosts, so for more extreme values of m/pT , the distribution will move to

smaller values. However, because of underlying event and initial state radiation, C2 does not change as much

as one would näıvely expect under boosts.

– 26 –

AL, Salam, Thaler 1305.0007

Is C2 the optimal discrimination observable formed from e2 and e3 
for boosted Z boson discrimination?

Optimal Observable = maximally separates background-rich from 
signal-rich regions of (e2, e3) phase space
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Figure 5: Discrimination curves for C
(�)
2 and D

(�)
2 for � = 0.5, 1, 2 for jets with mJ <

100 GeV. The D
(�)
2 variables provide significantly improved discrimination power for each

value of �, with the di↵erence being particularly pronounced at small values of �. This

demonstrates the the D
(�)
2 accurately capture the parametric scaling of the phase space.

with the Z decaying leptonically, and boosted Z decays from pp ! ZZ, with one Z decaying

leptonically, and the other to quarks. Events were generated with MadGraph5 2.1.2 [30]

at the 8 TeV LHC, and showered with Pythia 8.183 [31, 32]. Fat jets with R = 1, and

pT > 400 GeV were clustered in FastJet 3.0.3 [26] using the Winner Take All (wta)

recombination scheme [8, 20]. The energy correlation functions and n-subjettiness ratio

observables were calculated using the EnergyCorrelator and Nsubjettiness FastJet

contribs [26, 27].

We begin by studying the ratio observables without a lower mass cut. An upper mass

cut of 100 GeV is used to remove large mass QCD jets which have a two prong QCD struc-

ture. This guarantees that the sample of QCD jets is dominated by one prong jets, which is

what the ratio observables are designed to discriminate against. To demonstrate that our

power counting analysis correctly captures the physics, in Fig. 4 we plot distributions for

the variables C2, D2, for � = 0.5, 1.0, 2.0. These provide a clear confirmation of our power

counting analysis. Indeed, the variable D
(�)
2 is seen to provide reasonable discrimination

power for all three values of �. However, the behavior of C
(�)
2 is very dependent on �,

having essentially no discrimination power for small values of �. Although C
(�)
2 provides

some discrimination power for � = 1, 2, we will see that numerically this discrimination

power is much worse than for D
(�)
2 . This shows that the behavior of the parton shower is

dominated by the parametric scalings discussed in the previous sections, and not by order

1 numbers.

To asses more quantitatively the discrimination power, in Fig. 5 we plot the ROC curves

for C
(�)
2 and D

(�)
2 for the same three values of �. This provide numerical confirmation

of the trends observed in the distributions of Fig. 4. In particular, the variable D
(�)
2

provides significantly better discrimination power at each value of �, with the di↵erence

being significantly more pronounced at smaller values of �, where C
(�)
2 provides limited

discrimination.

We now consider the behavior of the ratio observables C
(�)
2 ,D(�)

2 in the presence of
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Figure 4: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Figure 4: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Figure 4: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Figure 5: Signal vs. background e�ciency curves (ROC curves) for C
(�)
2 and D

(�)
2 for

� = 0.5, 1, 2 for jets with mJ < 100 GeV from the MadGraph5 and Pythia 8 samples.

The D
(�)
2 variables provide significantly improved discrimination power for each value of

�, with the di↵erence being particularly pronounced at small values of �. (I’m thinking

that we might want to add N-subjettiness to this plot for reference. –ajl) (Also

add a 50% signal e�ciency curve for C2, D2 and N-subjettiness as a function

of � –ajl) (Add ROC curves from Herwig? –ajl)

Therefore, we are testing the power of C2 and D2 to discriminate between one-prong and

two-prong substructure. In Fig. 4, we show the raw distributions of C
(�)
2 and D

(�)
2 measured

on signal and background for � = 0.5, 1, 2. Especially at small �, D
(�)
2 is much more e�cient

at separating boosted Zs from QCD jets than is C
(�)
2 . This is exactly as predicted by the

power counting, because C
(�)
2 mixes the signal and background regions of phase space, an

e↵ect that is magnified at smaller �. The discrimination power is quantified in Fig. 5 where

we show the signal vs. background e�ciency curves (ROC curves) for the three choices of

� for C
(�)
2 and D

(�)
2 . At low signal e�ciency, every D

(�)
2 is a better discriminant than any

C
(�)
2 , and the performance of D

(�)
2 is much more stable as a function of � than C

(�)
2 .

(mention N-subjettiness in Fig. 5 –ajl)

(here –ajl)

We now consider the behavior of the ratio observables C
(�)
2 ,D(�)

2 in the presence of

a mass cut to test the predictions of Sec. 3.1.3. In Fig. 6a we show the QCD rejection

e�ciency for fixed 90% signal acceptance as a function of the lower jet mass cut, for � = 2.

This provides a striking confirmation of the power counting analysis. In particular, the

fact that the QCD rejection e�ciency for D
(2)
2 increases as the lower cut on the jet mass is

raised, shows that it does not correctly capture the physics. Indeed, low mass QCD jets,

should be the easiest to distinguish from the hard two prong signal jets, and should be

rejected by any discriminating variable. This is clearly the case for D
(2)
2 , which exhibits

increases rejection as the lower cut on the jet mass is decreased.

As predicted from the power counting analysis in Sec. 3.1.3 we also see that C
(2)
2 and
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Figure 5: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Figure 5: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Figure 5: Signal and background distributions for the ratio observables C
(�)
2 (left) and

D
(�)
2 (right) for � = 0.5, 1, 2 from the MadGraph5 and Pythia 8 samples. No lower

mass cut on the jets is applied but we take mJ < 100 GeV to remove the long tail ex-

tending to high masses of the background. The variable D
(�)
2 provides significantly better

discrimination than C
(�)
2 for each value of �, as expected from a power counting analysis.
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Power-counting arguments can be used to study the effects of:

Mass cut

Addition of pileup

Jet grooming

Optimal boosted top observables

Power-counting arguments CANNOT be used to study:

��� ��� ��� ��� ���
����

����

����

����

����

��
(�)

��
(�)

����� ����� 	
�� �
�� �

	�

�

Figure 8: E↵ect of Pile Up on the e
(�)
2 , e

(�)
3 phase space, and on the discrimination power

of the ratio observables C2 , D2. 1-Prong jets remain on the boundary, while 2-Prong jets

move vertically in the phase space. In the presence of Pile Up, contours of C2 , D2 must

be raised to include the signal. For C2, this increases the length of the contour in the

background region, reducing the discrimination power. On the other hand, D2 respects

the scaling of the phase space, and therefore continues to provide discrimination power in

the presence of pile up.

modes that initially set the scaling of e
(�)
2 . We can immediately see that if ⇤ > e

(�)
2

2
, then

the characteristic scaling of this region, e
(�)
3 ⇠ e

(�)
2

3
, is destroyed, and becomes that of the

upper unresolved region, namely e
(�)
3 ⇠ e

(�)
2

2
. The resolved phase space exhibits a similar

sensitivity to pile up. Indeed, if ⇤ > e
(�)
2

2
, this region of phase space is again destroyed,

and is moved up to e
(�)
3 ⇠ e

(�)
2

2
. We therefore see that for ⇤ > e

(�)
2

2
, the parametric

separation of the phase space is destroyed. In this case, both the signal and background

satisfy the parametric scaling e
(�)
3 ⇠ e

(�)
2

2
, determined by the haze of pile up, and one can

no longer hope to use ratio observables to distinguish them.

The more interesting region, in which pile up modifies, but does not destroy the ability

to use ratio observables is ⇤ . e
(�)
2

2
. From the expressions for the observables, we see that

for this scaling of ⇤, the upper boundary of the phase space is of course una↵ected. Both

e
(�)
2 , and e

(�)
3 increase due to the pile up, but the scaling e

(�)
3 ⇠ e

(�)
2

2
is preserved. However,

in the two prong region of phase space, the value of e
(�)
2 is not modified by the pile up, as

it is dominated by the hard splitting angle, but e
(�)
3 increases, although not parametrically

so. Therefore, configurations in this region of phase space move vertically in the e
(�)
2 , e

(�)
3

plane. This behavior is summarized in Fig. 8.

We now consider the predictions from this analysis for the stability of the distributions

for the observables C
(�)
2 ,D(�)

2 under the addition of pile up. The key point from our
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Figure 3: a) Phase space defined by the energy correlation functions e
(2)
2 , e

(2)
3 in the

presence of a mass cut. Contours of constant C
(2)
2 and D

(2)
2 are shown for reference. b)

E↵ect of a mass cut on the e
(�)
2 , e

(�)
3 phase space for � < 2. For � < 2, jets in the 1-prong

region that pass the mass cut can have e
(�)
2 that extend to small values. Contours of

constant C
(�)
2 and D

(�)
2 are shown for reference.

in the 2-prong region of the e
(�)
2 , e

(�)
3 plane. Recall that in this region of phase space

e
(�)
2 ⇠ R�

12 , (3.17)

where R12 is the angle between the hard subjets. Therefore, in this region of phase space

e
(�)
2 is simply related to the mass:

e
(�)
2 ⇠

✓

m2

p2T

◆�/2

. (3.18)

A cut on the jet mass is equivalent to an appropriate cut on e
(�)
2 for 2-prong jets.

A mass cut in the 1-prong region of phase space is more subtle. Recall that in this

region, e2 has the scalings

e
(2)
2 ⇠ m2

p2T
⇠ R2

cc + zs , (3.19)

e
(�)
2 ⇠ R�

cc + zs . (3.20)

There are two possibilities as for the relative scalings of e
(�)
2 and the mass: if soft emissions

do not contribute, then

e
(�)
2 ⇠

✓

m2

p2T

◆�/2

, (3.21)

which matches onto the relative scaling in the 2-prong region of phase space. If instead

soft emissions do contribute, then

e
(�)
2 ⇠ m2

p2T
, (3.22)
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Quark vs. Gluon Discrimination

CA ⇠ CF CA ⇠ nf spin ½ ~ spin 1

Power counting predicts that quark vs. gluon discrimination 
is sensitive to Monte Carlo tuning!

See Jesse’s talk
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Monte Carlo is vital for simulations in a realistic environment

Analytic calculations are vital for precise predictions and physical understanding

Power counting informs both and identifies what the 
robust QCD predictions are

Expect analytic predictions of D2 discrimination power soon!
AL, Moult, Neill 14XX.soon
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Back-up
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Power Counting N-subjettiness

zs ⌧ 1

Rcc ⌧ 1

zs ⌧ 1

Rcc ⌧ R12

R12 ⌧ 1zcs ⌧ 1

⌧ (�)2 ⇠ ⌧ (�)1

⌧ (�)2 ⌧ ⌧ (�)1

Only natural observable:

⌧ (�)2,1 =
⌧ (�)2

⌧ (�)1

⌧ (�)1 ⇠ R�
12

⌧ (�)2 ⇠ zs +R�
cc + zcsR

�
12

⌧ (�)1 ⇠ zs +R�
cc

⌧ (�)2 ⇠ zs +R�
cc


