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Jet Clustering as an Unsupervised Learning Task

o1 A
Tl M

Fundamental question: which particles belong together?

The state-of-the-art in organizing hadronic final states at the LHC is
hierarchical agglomerative clustering:

hierarchical: hereditary structure to the final state classification
agglomerative: every object starts as a cluster and is sequentially merged

These schemes require metrics on momenta
dj : R* x R* - RT, dig : R* - R and proceed as follows:

@ Assign each particle as a proto-jet.

® Repeat until there are no proto-jets left: Let
dix = argminu{d,-j, dig}. If X =/, combine proto-jets k and / into a
new proto-jet with Xoow = )?/ + )?k (E-scheme). Else, declare
proto-jet k a jet and remove it from the list.

X = 4-vector, with components py, p,, p, and E.
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E——
Membership Functions
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Definition For each particle i, its membership function f; is a map
fi : {jets} — [0, 1] such that Zjlle fi=1.

For the state-of-the-art clustering schemes, every clustered object belongs
to exactly one jet (with probability 1) and thus

~ _ J1 i was clustered into jet j
i) = {0 else

New developments’ have shown that introducing probabilistic
memberships can lead to enhanced understanding/performance.

Our goal is to incorporate fuzziness during clustering in order to
learn the features of jetty events and (sub)jetty structure.

— Today: a Preliminary Look at Fuzzy Jet Clustering
t Examples:
Qjets [1201.1914] Re-cluster with randomness. For particle i and jet j, f;(j) is the fraction of clusterings in which i isT in J-
N.B. Not exactly Qjets, which is sensitive to joint membership functions.
PUPPI [1407.6013] f;(j) based on local p7 density — high f;(j) indicates higher likelihood for hard scatter origin.
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Probabilistic Clustering
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Many standard methods of unsupervised learning incorporate probabilistic
membership as part of the clustering procedure.

One of the most basic such algorithms is the mixture model for k jets,
e O, are the jet
Y, IR ; are the jets
p(X) =Y mo(X|6)) ! J

— 7j are (learned) priors
J:

Which is equivalent to a generative model phrased as follows:
& €{1,...,k} = jet to which particle i belongs
& "% Multinomial(#, 1), for Y1 7 = 1.

11D

)?,-|§,- ~ ¢()?;\é§i), for a probability density ® depending on parameters ©

The probabilistic part of the clustering is in the random variables &;.
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Gaussian Mixture Model (GMM) Jets

Consider a special case in which ¢ is
a Gaussian in y — ¢ space:

(A1, %)) =
exp (=37~ A)TE (0~ i)
\/ ‘27TZJ‘

pis the y — ¢ (sub)coordinates of X.
Y is a 2 x 2 invertible matrix.

For a fixed k, the goal is to learn

l

@ /i (jet positions) - 7 =10.5,0.3,0.2]

® X (jet size and shape)
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EM Algorithm
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There is a well-known procedure for iteratively determining the distribution
of the &; known as the Expectation-Maximization (EM) algorithm:

@ Initialize 7, [i; and X; (more on this later)

® Alternate until convergence
E Step Compute membership functions f;(j) = Pr(§; = j|fij, X, 7)

M Step Given the f;(j), compute the new cluster centers and shapes:

1) R o (/D W1 A1 L D

< n ~ i) > i)

This is not sequential recombination!

N.B. This is Lloyd’s algorithm for solving k-means in the limit that ¥ = 02/ — 0 and m; =
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e
[llustration: kK =2
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Initialization 1%t E step 15t M step 2" E step 2" M step

In the E-step, darker colors correspond to higher value of f;(blue jet).

5%t M step:
31 E step 34 M step 4th E step 4th M step ~ Converged

N B - B A I
1 17 |17 |17 1w

The algorithm will converge, but not guaranteed to reach global optimum
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Modified Mixture Model (mMM)

Out-of-the-box, Gaussian Mixture Model jets are not IRC safe.

However, there is a simple modification that makes a broad class of
modified mixture model jets IR(C) safe, given by the likelihood

L(7,6) = ZpT, Zm (7116;)

e For o — 0, we recover the standard mixture model.

e For a =1, the jets are IRC safe for any ® that depends only on p.
e For a > 0, the jets are generally IR safe.

Physically: « gives a larger weight to the hard structure of a jet.
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Modification to the EM Algorithm
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The EM algorithm still applies with ~one minor change: f;(j) — p%:fi(Jj).

For any kernel ®, one needs to re-derive the M-step, but this is
straightforward for simple shapes:

Truncated Full
Gaussian’ Gaussian’

Gaussian

Uniform .

Preliminary results shown in the following slides constructed with
PyTHiA 8.170 and FASTJET 3.0.3.
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Choosing the Initialization e oan
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For sequential recombination, R is specified ahead of time and k is learned.

For mMM jets, k is specified ahead of time and (more than) R is learned.

s=8TeVPYTHIAZ - f, m,=15TeV

There are many possibilities for

k=) £
e e . = SOREE
initializing; for example, S 3% @ T e Ko
° 2F P 6& j + cnre E
g F + g < + C/IA R=1.0 Jets
H H . © 1- 0 i b m ets
® Run a sequential recombination £ I gl ouee
~ initial E Of Ao ol
scheme for k and the /i/"1"3 5o +L_£ @ Clusering Histoy ]
T | = Overlaid: i
® Choose k using some standard 2" Z i 4, Lighter = Earlier 4
procedure (e.g. gap statistic) 3 C’ s/
- .. . . B 0
and then initialize uniformly. Rapidity
© Let every particle be a cluster rx 1, =05 a=1

and let clusters merge. Cluster Merging Scheme

» More plots in backup
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Learning o for mGMM Fuzzy Jets

We have studied several kernels ¢ and many configurations.

For illustration, the next slides show
MmGMM jets with ¥ o o?/.

Pythia /s=8TeV Z' —tt
7,

Initialization: anti-k; jets with

R=1.0and pr > 5 GeV.

Background QCD dijets, p1 > 200 GeV
3-prong Z" — tt (fully hadronic)
2-prong W' — W(— qq')Z(— e€)

N.B. Signal events are weighted to
match the background pt spectrum.

Define the kinematics of fuzzy jet j by Elilrilisgfa?;eatzethlgtg?’nézg:is
s N < icl i
)<jet _ Zi:l Xipartlce X 5(man f;(q)a./)

More information on jet kinematics » in the backup
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Comparing Jet Kinematics: Fuzzy Jets vs anti-k; o
G iNS

Fuzzy mGMM jets with ¥ oc 02/ are very similar to anti-k; R=1.0 jets.

_soo P8 Z fCorsamion=0es oo

8 - 5 r Pythia 8 — ik W aq

= = Qo 0.5 s =8 TeV —antik, Z- ]
3)_400 r et [ e—— —antik, QCD ] g
) L Q L 350(38\/<pT <450 GeV | i Il
=) N L ---FuzzyW- qq' | =
ﬁ L © O'4f ---FuzzyZ-tt ] 3
N 300f g N - - - Fuzzy QCD 1

T r L ]
o F Z 0.3 4 -
£ r F {1 3
T 2001 r 1 =
© L L ] 5
9 t 0.2~ - g-
i Foo 1 8
100? ] o1k ot 1 3

) I S S RN A O"‘—rv:f*H‘\HH\TT‘ e

0 100 200 300 400 500 0 50 100 150 200 250

Leading anti-kt Jet [ [GeV] Leading Jet Mass [GeV]

pr is determined mostly by the hard Mass depe.nds on the shape of the
core: fuzzy jets learn the same core  Jet: fuzzy jets learn different shapes

Benjamin Nachman (SLAC) Fuzzy Jets August 18, 2014 12 /18



The size o of fuzzy jets o oas

Unlike usual sequential recombinationT, jet size is learned by fuzzy jets.
One measure is the Gaussian o, though not dlrectly comparable with R.

x10” X0 : —
————— F =
450" Pythia 8 E 350 pythia .
400 (s=8Tev 7.6 300 Vs =8 TeV —W- qq' 1
E asocevep """ <50 Gev . A E 350 Ge"<V:MWMMH<“5° Gev = e E
3505 " —W- qq E 2500 7' tt E
S00F ~QCD I —QcD |
250F E F 1
200 E 150 E
150 E 100- e
100 E F ]
500 E 501 E
g E E i ]

% 1 % 05 1
Learned o Average Learned o

For fixed pt, fuzzy jets is learning The subleading jets tend to be larger
the sizes for these processes! on average than the leading jets.

T With modification, size can vary in sequential recombination - see Jets with Variable R
Benjamin Nachman (SLAC) Fuzzy Jets August 18, 2014 13 /18


http://arxiv.org/abs/0903.0392

Correlations between ¢ and anti-k; jet mass o oam

D N

As expected, for a fixed pr, the higher mass jets have a larger size.

Pyth|a8 Wﬂ.qq Correlation =0.67

Pythia 8 QCD, Correlatlon =0.58

Learned o
Learned o

adng an R=10
adoganid =10 X
350 GeV < p <450 GeV | | 350 GeV‘ < p | <450 GeV

. . . . L i . L

. ‘012‘ ‘0\ L 16‘ . ‘0.‘8‘ ) 0 oz oz o6 os 1
Leading anti—kt Jet Mass/Jet [

Leading anti—k[ Jet Mass/Jet [
However, the correlation is not 100% - the fuzzy jet o is not just the
characteristic anti-k; jet size.
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Correlations between ¢ and fuzzy jet mass A

Dl AN

Even though o has a component uncorrelated with the characteristic
anti-k; jet size, it is highly correlated with the characteristic fuzzy jet size.

Pythia8 W- qq Correlation = 0.86

Pythla 8 QCD, Correlatlon =0.94

Learned o
Learned o

esdng ani R=10 Leadng stk R=10
350 GeV < p ' <450 Gev | ) 350 Gev <p, | <450 GeV
P P L T P

O B U E
0.8 1 0 0.2 0.4 06 0.8 1

0 02 04 06
Leading Fuzzy Jet Mass/Jet p_ Leading Fuzzy Jet Mass/Jet p_
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E——
Tagging Hadronic W boson and top quark decays
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In some regimes, the uncorrelated component of o (and the mass) may be
useful in discriminating heavy particle decays.

)

1 - QCD Efficiency
o
[ee]

1 - QCD Efficiency
o
[o2]

0.6 0.6
Pythia 8 Pythia 8 3
[em——r Lot ik R-10 Y
0. jso GeV<p Y <450 Gev 0. 7350 GeV<p, <450 GeV .{
r * Fuzzy o r ¢ Fuzzyo b
[ * anti-k Mass [ * anti-k Mass ':
0.2 j * Fuzzy Mass J: 0'25 * Fuzzy Mass 41
r Random Tagger 1 [ Random Tagger ]
% 0.10505040506070806 1 % 0402 037040506070809 1
W - qq' Efficiency tt Efficiency

Still need to understand correlations with other (substructure) variables.
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Extensions for Fuzziness
ey An
L | SN \ 4

Today's focus was on learning. In order to fully take advantage of the
fuzzy part of mMM jets, one needs to incorporate correlations.

. . {s=8TeVPYTHIAZ - tf, m =1.5TeV
The generative model for mMM jets z

_ : $0.05F T
assume independence — fuzzy jets &
‘volatility’ (a la Qjets) could be more ~ £0.04¢ ]
. . T [
powerful with correlations. 2003 ]
z |
. . a T
There are unsupervised learning 0.02F 1
algorithms that do this, but scale ooik ]
with complexity. f
Lo bt v b v v 17y o 1
% 780 100 150 200 250

Incorporating correlations may Single Jet Mass [GeV]
necessary to learn the tree structure
of QCD radiation.

With f;(j), can compute a distribution for any

jet observable. Details » in the backup
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Conclusions

e An
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Fuzzy jets are an alternative clustering scheme that naturally incorporate
probabilistic membership to learn features of hadronic final states.

e Given any probability density ®
that only depends on y and ¢,
there is a corresponding
modified mixture model jet.

o
)
T

1 - QCD Efficiency
o
@

Pythia 8

ganik Re10
<450 GeV/

e Unlike sequential recombination
schemes, these algorithms learn 0.
the shape of jets.

350 GeV <p,

* Fuzzy o
* anti-k Mass

0.2

* Fuzzy Mass

S
4

Random Tagger

e In some regimes, this learning
. i T PR T TN N R AT T N A
may help improve tagging 0 010203040506070809 1
W - qq' Efficiency
performance.

Further exploration and comparisons are required to fully understand and
exploit the potential of Fuzzy Jets!
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Cluster Merging for mGMM Jets » gack o main sices

o1 A

P b MM\

Need to fix a parameter rmerge. We
find that if small enough, the actual

(s=8TeVPYTHIAZ - ff, m =15 TeV
value does not matter.

0 10} e
[V E ]
(chosen here to be r = 0.01) [ i i
) o ]
H N H E ® M dets
With the appropriate choices of o 5 107
. Q L
and «, one recovers a set of jets very E
P4

similar to C/A (only depend on p). 0 \-‘_q-_
10F E

The next two slides show some i 1

examples of event displays with the

clustering history overlaid, with 15™10"56"50 465660 68060

learning ¥ = ¢/ and a full

covariance matrix 2.

Number of EM lterations
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(s=8TeVPYTHIAZ - i, m =15 TeV

%! 3: T T ‘ :
i- E * ‘“} . & *Top Quarks E
?C» 2; / \f:j * ciar=10dets ]
< L . ]
E 1; \j b ' MGMM Jets 1
5 i ' ,’T+ 1
g OV %y*- \g 7 ]
N [ 2 v .. ]
< _1} + \ + . .{, {
2F . F /‘\ .|.u E
r .. L : ]
-3F @‘ ) ."I!‘J‘ -
£ | | ‘ 3

0 5
Tx1,Y=0la=1 Rapidity

Cluster Merging Scheme
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(s=8TeVPYTHIAZ - i, m =15 TeV

%‘ : T T T ‘ :
© - 65 s &"’:} ]
= 3: *‘ v} &2 & *Top Quarks ]
) r / ) i ' 1
= 2; /% / * caR=1.0dets
< r y ]
g 1E mGMM Jets E
£ O ]
-1 B

25 :

-3F ‘ E

5
Trxla=1 Rapidity

Cluster Merging Scheme
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Jet Observables with Membership Functions »sack o main sides

Membership functions can generate

distributions for each jet observable. g
w0 3
Pr(O(J) < c) 8
—ZPr J) < c|S e J)Pr(S € J) o
104 g
Jis a jet
O is a jet observable (like mass) AR,

0.3} pT=[100200]GeV, <25 DLV -

[ — PFiow ]

++-- PFlowCHS
—— PUPPI

S is a set of constituents
Pr(S € J) is determined by the f;(J)

fraction of jets

From this distribution, one can use
various moments as new jet observables.

€T09° LOPT:ATXI®

e.g. coefficient of variation for the mass
(Qjets volatility)

100
mass (GeV)
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Correlations between o and anti-k; jet mass »sackwToc
1 A

Dl AN

Pythia8 W

- qq', Correlation = 0.64
T T
HE

Pythia 8 QCD, Correlation = 0.58

Learned o
Learned o

0.5

Lendog anik R-10 ‘
350 GeV <p, U <450 Gev | | 350 Gev‘wT | <450 GeV
T O T N B M

BT T T R 0 50 100 150 200 250

0 50 100 150 200 250
Leading anti-k Jet Mass [GeV] Leading anti-k Jet Mass [GeV]
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Correlations between ¢ and fuzzy jet mass »sactwToc
[ad B VY od

DN

Pythia8 W- qq', Co| rrelat|on 0.77

Pythia 8 QCD, Correlation = 0.92

Learned o
Learned o

Leaing ani R-10 Leading ani, R=1.0
350 GeV <p, 350 GeV<p <450 GeV
oo b b e bt e b

50T 00 180 200 0 50 100 150 200 250

0 50 100 150 _ 200 250
Leading Fuzzy Jet Mass [GeV] Leading Fuzzy Jet Mass [GeV]
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Comparisons with Trimmed Jet Mass »gack o Toc

o1 Ay
e N

S 0B 2 0B

':E) r Pythia 8 ~W-qq | < E Pythia 8 — ik W g ]

2 05F {s=8Te _7.f A 2 05-ys=8Te —antiz- & ]

8 F ssoceve pum@ P a0 cov g 8 F asocev< pwanuw TP 450 cev — anti-k, QCD 1

N L T *QCD ] N L ! ---FuzzyW- qq' |

T 04? N © O4j ---FuzzyZ- tt ]

g L 7 g C - - Fuzzy QCD ]

o L ] o L ]

Z 0.3 - Z 0.3 b
0.2f ] 0.2 =
0.1- ] ] 0.1 A

b I e == ] e I e e ]
OO 50 100 150 200 250 0 50 100 150 200 50

Leading anti—kT Jet Mass [GeV]
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Comparisons with Trimmed Jet Mass Il »saciooc

1 - QCD Efficiency

PR I

Random Tagger

i
Pythia 8
Lestiog ik R=2.0 %
350 GeV <p_ <450 GeV L
« Fuzzyo o
. .
* anti-k Mass 4
* Fuzzy Mass j

0.102030405060.70809 1

W - qq' Efficiency

Benjamin Nachman (SLAC)

1 - QCD Efficiency

Pythia 8

R

Leading ani, R=1.0

350 Gev <p_
* Fuzzy o
* anti-k Mass

* Fuzzy Mass

<450 GeV

Random Tagger

o

0.203

040506070809 1
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Comparisons with Trimmed Jet Mass Il »eacktoToc
ol A

e N

QCD Correlanon =0.56 Pythia 8 QCD, Correlanon 0.56

Learned o
Learned o

Leadig ani R-10 Leading ani, R=1.0
350 GeV <p, 350 GeV<p <450 GeV
oo b b e bt e b

50T 00 180 200 0 50 100 150 200 250

0 50 100 150 200 250
Leading anti-k Jet Mass [GeV] Leading anti-k Jet Mass [GeV]
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Comparisons with Trimmed Jet Mass IV »sackoToc o oam

e N

Pythia 8 QCD Correlanon 0.56

Pythia 8 QCD Correlatlon =0.56

Learned o
Learned o

Lendog anik R-10 endng stk R=10
350 GeV <p, <450 GeV | | 350 GeV‘ < p ) <450 GeV/
. . . . L T L

6z 04 06 o8 1 0 02 04 06

0 02 04 06
Leading anti-k Jet Mass/Jet p_ Leading anti-k Jet Mass/Jet p_
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LOWGF pT bln Jet Mass » Back to main slides

o1 Ay
D AN

5 0.6 2 06—

g r Pythia 8 —W- qq' 1 S E Pythia 8 — anti-k, W~ qq' E

2 0.5 \s=8TeV _7.f A 2 05F {s=8TeV —anik z- ]

3 F 250 R ~ 1 8 [ asocev<p, || <3s0cev — anti-k, QCD 4

8 : GeV<p' <350 GeV/ o QCD : u : r . FuzzyW‘, qq' :

T 04? N © O4j ---FuzzyZ- tt ]

g L 7 g C - - - Fuzzy QCD ]

o L ] o L ]

Z 0.3 - Z 0.3 b
0.2f ] 0.2 =
0.1 4 0.1- -

O: \==ﬂ_'=\l:\\ P L1 : 07 TR R = ST 7:3:1;
0 50 100 150 200 _ 250 0 100 150 200 250
Leading antl—kT Jet Mass [GeV] Leading Jet Mass [GeV]
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Lower pr bin: Fuzzy Mass and ¢ » sack to main sices o oam

e N

Pythia8 W- qq', Co| rrelat|on 0.79
Y .

Pythia 8 QCD, Correlation = 0.92

Learned o
Learned o

Lesding i R-10
250 GeV <p, e 250 GeV <p, " <350 Gev
v e b e bt L

050100 150 200 250 0 50 100 150 200 250

Leading Fuzzy Jet Mass [GeV]

Leading Fuzzy Jet Mass [GeV]

August 18, 2014 14 /

Benjamin Nachman (SLAC) Fuzzy Jets



Lower pr bin: Jet Mass and g » gack to main siiges o oam

e N

Pythia8 W qq Correlation = 0.44

Pythia 8 QCD, Correlation = 0.53

o b L B
el kel
2 2 1
I I
3 S
|
0.5
iy, e e IO i TN
0 50 100 150 200 250 0 50 100 150 200 250

Leading anti-k Jet Mass [GeV] Leading anti-k Jet Mass [GeV]
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Lower pr bin: Fuzzy Mass/pr and g > sack o main sices o oam

e N

Pythia8 W- qq Correlation = 0.84
T T T L B

Pythla 8 QCD, Correlatlon =0.94

Learned o
Learned o

eading anik R-L0

<350 GeV/

Lendog anik R-10
250 GeV <p, <350 Gev | | 250 sev‘ < p |
. . . . L T P
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Lower pr bin: Jet Mass/pr and ¢ sack to main sies e oas
Db AN

Pythia 8 Wﬂ qq Correlanon 0.47

Pythia 8 QCD, Correlation = 0.54

Learned o
Learned o
=

0.5

oF
250 GeV < p <350 GeV | | 250 GeV‘ < p ) °< 350 GeV
. . . . L T P

6z 04 06 o8 1 0 02 04 06 08 1

0 02 04 06
Leading anti-k Jet Mass/Jet p_ Leading anti-k Jet Mass/Jet p_
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LOWGF pT bl n I_ea rn ed (O  » Back to main slides

o AR
LS | =5 g \ 4
x10° x10°
e N . 300F ———— -
3500 Pythia 8 3 f Pythia 8 ]
F 5=8Tev 7.t 2501 Vs =8 TeV ~W-qq -
3001 250 GeV < pumq T 350 Gev ' - [ 250Gev< p:mw T gs0 gev . - b
F ’ —W- qq' 200k —Z7'- tt ]
250F ~QCb | ; ~QCD |
200- T s ]
150 E 100" ]
100F 3
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50 | L ]
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Learned o Average Learned o
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Learning Substructure

e An
T AN

One can apply the same techniques to learn the shapes of jet substructure.
For example, k = 2 fuzzy jets with anti-k; R = 1.0 constituents as input:

Coordinates rotated and scaled - leading subjet is at (0,0) and has o = 1.

10 HHmmmmmm AR 9107”m‘m‘m‘m‘mm‘m‘m‘m
/g/ FPythia ' \/s=8 TeV | QCD' ] = [ Pythia \s=8 w54
SR: | E o 8 E
k=] £ B = L B
6 6F \3 G 6 s
o r . ° r ]
5 4 . E 5 4 .l E
3 2F O 4 3 2f o ety E
[} r . :“ i} C \\A} 9
8 0: e @cp :“ %) OE ﬁ@ . ]
2k . 9 2 . .t E
- ' i 4 . :
6 E 6 ]
-8 / -8 E
T IR SR P RN Y AR b e b Lo b b Lo b Lo L
W R S R 5‘1/6 8§10 0586 4 20 2 46 810
~— Sc)ed and Shifted n Scaled and Shifted n
One small and one broad subjet Relatively symmetric subjets
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Learning Substructure |l e oan
o e M\

Two observables based on the representative event displays: AR between
learned fuzzy jets and the relative size of the second fuzzy subjet (02/01).

6001 Pythi‘a g | ] 350 pythia 8 W .
5005 Vs =8TeV —W-qq] 3000 \@=8;I:e\‘/mn - qq{
; 200 GeV < jm‘"q‘"nrk‘mtgsoeev _ 7: E ZODGe\/<p: M350 Gev —QCD E
B " QCh - 2501 7
4001 - = 1
r ] 200~ -
300F B F ]
r ] 150 -
2001 4+ 4 1001 3
100F- e - - 50 A

0 02 04 06 08 1 10° 10! 1 10 10°
AR Between Fuzzy Jets Relative Size of Second Fuzzy Jet

W Further apart (correlated with W subjets are more symmetric in size

AR of seeded R=0.3 anti-k; jets) than for QCD. e
» More in the backup
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Learning substructure: Correlations - sack o main sides
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Learning substructure: Correlations [l » sack o main sices
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