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Jet Clustering as an Unsupervised Learning Task

Fundamental question: which particles belong together?

The state-of-the-art in organizing hadronic final states at the LHC is
hierarchical agglomerative clustering:

hierarchical: hereditary structure to the final state classification
agglomerative: every object starts as a cluster and is sequentially merged

These schemes require metrics on momenta
dij : R4 × R4 → R+, diB : R4 → R+ and proceed as follows:

1 Assign each particle as a proto-jet.
2 Repeat until there are no proto-jets left: Let

dkX = argmini ,j{dij , diB}. If X = l , combine proto-jets k and l into a

new proto-jet with ~Xnew = ~Xl + ~Xk (E-scheme). Else, declare
proto-jet k a jet and remove it from the list.

~X = 4-vector, with components px , py , pz and E .
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Membership Functions

Definition For each particle i , its membership function fi is a map
fi : {jets} → [0, 1] such that

∑k
j=1 fi = 1.

For the state-of-the-art clustering schemes, every clustered object belongs
to exactly one jet (with probability 1) and thus

fi (j) =

{
1 i was clustered into jet j
0 else

New developments† have shown that introducing probabilistic
memberships can lead to enhanced understanding/performance.

Our goal is to incorporate fuzziness during clustering in order to
learn the features of jetty events and (sub)jetty structure.

† Examples:

Qjets [1201.1914] Re-cluster with randomness. For particle i and jet j , fi (j) is the fraction of clusterings in which i is† in j .

N.B. Not exactly Qjets, which is sensitive to joint membership functions.

PUPPI [1407.6013] fi (j) based on local pT density – high fi (j) indicates higher likelihood for hard scatter origin.

→ Today: a Preliminary Look at Fuzzy Jet Clustering
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Probabilistic Clustering

Many standard methods of unsupervised learning incorporate probabilistic
membership as part of the clustering procedure.

One of the most basic such algorithms is the mixture model for k jets,

p(~X ) =
k∑

j=1

πjΦ(~X |~Θj)

Which is equivalent to a generative model phrased as follows:

ξi ∈ {1, ..., k} ≡ jet to which particle i belongs

ξi
IID∼ Multinomial(~π, 1), for

∑|π|
i=1 πi = 1.

~Xi |ξi IID∼ Φ(~Xi |~Θξi ), for a probability density Φ depending on parameters ~Θ

The probabilistic part of the clustering is in the random variables ξi .

~Θj are the jets
πj are (learned) priors

~π = [0.5, 0.3, 0.2]
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Gaussian Mixture Model (GMM) Jets

Consider a special case in which Φ is
a Gaussian in y − φ space:

Φ(~ρ|~µj ,Σj) =

exp
(
−1

2 (~ρ− ~µj)ᵀΣ−1
j (~ρ− ~µj)

)

√
|2πΣj |

~ρ is the y − φ (sub)coordinates of ~X .
Σ is a 2× 2 invertible matrix.

For a fixed k , the goal is to learn

1 ~µ (jet positions)

2 Σ (jet size and shape)

k = 3

~Θj = (~µj ,Σj)

Σj = 0.52I

~π = [0.5, 0.3, 0.2]
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EM Algorithm

There is a well-known procedure for iteratively determining the distribution
of the ξi known as the Expectation-Maximization (EM) algorithm:

1 Initialize ~π, ~µj and Σj (more on this later)

2 Alternate until convergence

E Step Compute membership functions fi (j) = Pr(ξi = j |~µj ,Σj , ~π)

M Step Given the fi (j), compute the new cluster centers and shapes:

πj =
n∑

i=1

fi (j)

n
~µj =

∑
i fi (j)~ρi∑
i fi (j)

Σj =

∑
i fi (j)(~ρi − ~µj)(~ρi − ~µj)ᵀ∑

i fi (j)

This is not sequential recombination!

N.B. This is Lloyd’s algorithm for solving k-means in the limit that Σ = σ2I → 0 and πi = 1
k

.
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Illustration: k = 2
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In the E-step, darker colors correspond to higher value of fi (blue jet).
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The algorithm will converge, but not guaranteed to reach global optimum
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Modified Mixture Model (mMM)

Out-of-the-box, Gaussian Mixture Model jets are not IRC safe.

However, there is a simple modification that makes a broad class of
modified mixture model jets IR(C) safe, given by the likelihood

L(~π, ~Θ) =
N∑

i=1

pαTi




k∑

j=1

πjΦ(~ρi |~Θj)




• For α→ 0, we recover the standard mixture model.

• For α = 1, the jets are IRC safe for any Φ that depends only on ~ρ.

• For α > 0, the jets are generally IR safe.

Physically: α gives a larger weight to the hard structure of a jet.
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Modification to the EM Algorithm

The EM algorithm still applies with ∼one minor change: fi (j) 7→ pαTi fi (j).

For any kernel Φ, one needs to re-derive the M-step, but this is
straightforward for simple shapes:

Uniform Truncated
Gaussian

Full
Gaussian

Gaussian
Σ = σ2I

Preliminary results shown in the following slides constructed with
Pythia 8.170 and FastJet 3.0.3.
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Choosing the Initialization

For sequential recombination, R is specified ahead of time and k is learned.

For mMM jets, k is specified ahead of time and (more than) R is learned.

There are many possibilities for
initializing; for example,

1 Run a sequential recombination
scheme for k and the ~µ initial

i=1..k

2 Choose k using some standard
procedure (e.g. gap statistic)
and then initialize uniformly.

3 Let every particle be a cluster
and let clusters merge.
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Learning σ for mGMM Fuzzy Jets

We have studied several kernels Φ and many configurations.

For illustration, the next slides show
mGMM jets with Σ ∝ σ2I .

Initialization: anti-kt jets with
R = 1.0 and pT > 5 GeV.

Background QCD dijets, p̂T > 200 GeV

3-prong Z ′ → tt̄ (fully hadronic)

2-prong W ′ →W (→ qq′)Z (→ eē)

N.B. Signal events are weighted to
match the background pT spectrum.

Define the kinematics of fuzzy jet j by

~X jet
j =

∑N
i=1

~X particle
i × δ(maxq fi (q), j)

More information on jet kinematics
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Fuzzy jets can (and do) overlap!
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Comparing Jet Kinematics: Fuzzy Jets vs anti-kt

Fuzzy mGMM jets with Σ ∝ σ2I are very similar to anti-kt R=1.0 jets.
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The size σ of fuzzy jets

Unlike usual sequential recombination†, jet size is learned by fuzzy jets.
One measure is the Gaussian σ, though not directly comparable with R.

σLearned 

0 0.5 1
0

50

100

150

200

250

300

350

400

450

310×

t t→Z'
 qq'→W

QCD

Pythia 8

 = 8 TeVs
 < 450 GeV

 R=1.0
t

Leading anti-k

T
350 GeV < p

For fixed pT , fuzzy jets is learning
the sizes for these processes!
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The subleading jets tend to be larger
on average than the leading jets.

† With modification, size can vary in sequential recombination - see Jets with Variable R
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Correlations between σ and anti-kt jet mass

As expected, for a fixed pT , the higher mass jets have a larger size.
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However, the correlation is not 100% - the fuzzy jet σ is not just the
characteristic anti-kt jet size.
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Correlations between σ and fuzzy jet mass

Even though σ has a component uncorrelated with the characteristic
anti-kt jet size, it is highly correlated with the characteristic fuzzy jet size.
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Tagging Hadronic W boson and top quark decays

In some regimes, the uncorrelated component of σ (and the mass) may be
useful in discriminating heavy particle decays.
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Still need to understand correlations with other (substructure) variables.
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Extensions for Fuzziness

Today’s focus was on learning. In order to fully take advantage of the
fuzzy part of mMM jets, one needs to incorporate correlations.

The generative model for mMM jets
assume independence – fuzzy jets
‘volatility’ (à la Qjets) could be more
powerful with correlations.

There are unsupervised learning
algorithms that do this, but scale
with complexity.

Incorporating correlations may
necessary to learn the tree structure
of QCD radiation.
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With fi (j), can compute a distribution for any

jet observable. Details
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Conclusions

Fuzzy jets are an alternative clustering scheme that naturally incorporate
probabilistic membership to learn features of hadronic final states.

• Given any probability density Φ
that only depends on y and φ,
there is a corresponding
modified mixture model jet.

• Unlike sequential recombination
schemes, these algorithms learn
the shape of jets.

• In some regimes, this learning
may help improve tagging
performance.
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Further exploration and comparisons are required to fully understand and
exploit the potential of Fuzzy Jets!
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Cluster Merging for mGMM Jets Back to main slides

Need to fix a parameter rmerge. We
find that if small enough, the actual
value does not matter.

(chosen here to be r = 0.01)

With the appropriate choices of σ
and α, one recovers a set of jets very
similar to C/A (only depend on ~ρ).

The next two slides show some
examples of event displays with the
clustering history overlaid, with
learning Σ = σ2I and a full
covariance matrix Σ.
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Jet Observables with Membership Functions Back to main slides

Membership functions can generate
distributions for each jet observable.

Pr(O(J) ≤ c)

=
∑

S
Pr(O(J) ≤ c |S ∈ J) Pr(S ∈ J)

J is a jet
O is a jet observable (like mass)
S is a set of constituents
Pr(S ∈ J) is determined by the fi (J)

From this distribution, one can use
various moments as new jet observables.

e.g. coefficient of variation for the mass
(Qjets volatility)
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FIG. 2. Distribution of volatility for signal (boosted W -jets)
and background (QCD jets) using a rigidity ↵ = 0.01.

sults with classical pruning. Focus on the rows labeled
“none” for now (volatility is explained below). Since this
quantity scales as

p
L, the square of the number in the

Table can be interpreted as an e↵ective luminosity im-
provement due to employing the Q-jet procedure. For
example, for ↵ = 0.1 the number 1.18 means an e↵ective
increase in the luminosity by (1.18)2 � 1 = 39%. Larger
↵ values confine the range of trees and yield results very

near the classical pruning results, i.e., hSi
�B

��
Q

! hSi
�B

��
cl
.

Smaller ↵ values (↵ < 0.1, with a much broader range
of trees) also tend to degrade (decrease) the discovery
potential.

The second set of rows exhibit the average jet mass

fluctuation �hmi|cl
�hmi|Q (note classical over Q-jets here). Val-

ues greater than unity mean that the mass can be mea-
sured more precisely with the Q-jet procedure for the
same luminosity. Note that there is continuing improve-
ment in �hmi as ↵ decreases. That we get sensible results
for (i.e.with a flat distance measure) is presumably be-
cause pruning is relatively insensitive to which tree we as-
sign; even for physically unlikely clusterings, the hard ra-
diation that reconstructs the mass is typically not pruned
away.

The second way we have considered using Q-jets is in
constructing qualitatively new types of observables. As
an example, consider the volatility of a jet, defined by

V = �/hmi , (4)

where � ⌘
p
hm2i � hmi2 and hmi are the RMS devi-

ation and the mean of the pruned jet mass distribution
for a single jet. The distribution of volatility for signal
and background Q-jets with ↵ = 0.01 is shown in Fig. 2.
We see that W jets have a lower volatility than QCD
jets. This is easily understood, since the W jets have an
intrinsic physical mass scale, while the QCD jets do not.
Cutting on volatility, V  Vcut can therefore improve
significance in a boosted W search. The improvement is
given in Table 1 for various values of Vcut.

The e�ciencies for a volatility cut on signal and back-
ground are shown in Fig. 3. These e�ciencies are defined
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FIG. 3. The background versus signal e�ciencies correspond-
ing to a cut on volatility, for various ↵’s, as compared to the
classical pruning result.

as the fraction of the Q-jets that yield a pruned mass in
the mass bin after the volatility cut. We plot them nor-
malized to the classical results (↵ = 1 with no volatility
cut). In the limit ↵ ! 1 the curve collapses to the point
(1,1). The upper right region of the plot corresponds to
large values of Vcut, i.e., e↵ectively no volatility cut. We
find that the largest signal significance is obtained for
a volatility cut of approximately 0.03, where for ↵ near
zero we achieve a relative hSi/hBi of ⇠ 9 and a relative
hSi/�B improvement of ⇠ 1.5 (the square of this num-
ber is the factor of two quoted in the Abstract). This
corresponds to the neighborhood of the point (0.25, 0.03)
in Fig. 3. Finally we note that the precision of the mass
measurement, shown in the lower rows in the table, is
somewhat degraded by placing a cut on the volatility.
This should not be a surprise as the cut discards some of
the signal jets. A more comprehensive discussion of the
statistics and of volatility will be given in [14].

In this paper, we have shown that it can be advan-
tageous to consider a large number of trees constructed
from the same jet in a single event, rather than a single
tree as is done in traditional clustering algorithms. Al-
though this paper has focused on tree-based observables,
the Q-jets idea, of using non-determinism in event analy-
sis, can naturally be applied in many other ways. Indeed,
most observables, including jet substructure observables,
such as jet masses, moments, pull [15], jet shapes [16],
etc., as well as more global observables, such as the num-
ber, distribution and 4-momenta for the jets in an event,
work by trying to make the best guess at which prop-
erties of which final state particles tell us the most in-
formation about the underlying physics. The basic idea
for Q-jets is that there is an inherent ambiguity in this
best guess, both due to there not being a precise corre-
spondence between final state particles and underlying
physics, and due to our poor ability to extract that cor-
respondence even if it were well-defined (as in a color
singlet decay, for example). Thus, it would be natural
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Figure 8: Mass resolution nPU = 80 for jets with 100 GeV < pT < 200 GeV and |⌘| < 2.5

for plain jet mass (left) and trimmed jet mass (right).
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Figure 9: Jet mass resolution nPU = 80 for jets with 100 GeV < pT < 200 GeV and

|⌘| < 2.5 (left) and jet mass vs. number of pileup interactions for jets with mass between 100

and 200 GeV.

4.3 Missing Energy

Finally, we look at an event quantity, the missing transverse energy (Emiss
T ), that is interesting

from both a theoretical and an experimental point of view. From the theoretical perspec-

tive, missing energy is one of the main signatures of new physics. For example, in R-parity

conserving supersymmetry, every event in which superpartners are pair-produced results in

two of the lightest superpartners in the final state, which are seen as missing energy. Addi-

tionally, missing energy has played a key role in many precise standard model measurements,

such as the W mass measurement [36], the Higgs to WW discovery [37, 38] and the Higgs

to ⌧⌧ evidence [39, 40]. On the experimental side, missing energy is challenging because it

compounds errors from the measurement of all other objects in the event. In the presence of

pileup, the Emiss
T resolution rapidly degrades because the full energy of the additional pileup

– 16 –
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Correlations between σ and anti-kt jet mass Back to TOC
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Correlations between σ and fuzzy jet mass Back to TOC
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Comparisons with Trimmed Jet Mass Back to TOC
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Comparisons with Trimmed Jet Mass II Back to TOC

 qq' Efficiency→W
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 
- 

Q
C

D
 E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

Pythia 8
 < 450 GeV

 R=1.0
t

Leading anti-k

T
350 GeV < p

σFuzzy 

 Masstanti-k

Fuzzy Mass

Random Tagger

 Efficiencytt
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 
- 

Q
C

D
 E

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

Pythia 8
 < 450 GeV

 R=1.0
t

Leading anti-k

T
350 GeV < p

σFuzzy 

 Masstanti-k

Fuzzy Mass

Random Tagger

Benjamin Nachman (SLAC) Fuzzy Jets August 18, 2014 10 / 22



Comparisons with Trimmed Jet Mass III Back to TOC
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Comparisons with Trimmed Jet Mass IV Back to TOC
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Lower pT bin: Jet Mass Back to main slides
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Lower pT bin: Fuzzy Mass and σ Back to main slides
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Lower pT bin: Jet Mass and σ Back to main slides
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Lower pT bin: Fuzzy Mass/pT and σ Back to main slides
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Lower pT bin: Jet Mass/pT and σ Back to main slides
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Lower pT bin: Learned σ Back to main slides
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Learning Substructure

One can apply the same techniques to learn the shapes of jet substructure.
For example, k = 2 fuzzy jets with anti-kt R = 1.0 constituents as input:

Coordinates rotated and scaled - leading subjet is at (0, 0) and has σ = 1.
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Learning Substructure II

Two observables based on the representative event displays: ∆R between
learned fuzzy jets and the relative size of the second fuzzy subjet (σ2/σ1).
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Learning substructure: Correlations Back to main slides
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Learning substructure: Correlations II Back to main slides
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