
Simone Marzani
Institute for Particle Physics Phenomenology

Durham University

BOOST 2014
University College London

18th - 22nd August 2014

SOFT DROP

based on
Larkoski, SM, Soyez and Thaler JHEP 1405 146

with a recap of
Dasgupta, Fregoso, SM and Salam JHEP 1309 028 
Dasgupta, Fregoso, SM and Powling EPJ C 73 11

1



• Jet mass distributions suffer from large logarithms:

• We need all-order calculations

Jet mass: all-order calculations
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At NLL and beyond:
• non-global logs: difficult to resum
• dependence on the jet algorithm
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e.g. Dasgupta, Khelifa-Kerfa, S.M. and Spannowsky (2012)
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Jouttenus, Stewart, Tackmann and Waalewijn  (2013)
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Grooming algorithms
Take trimming as an example

1. Take all particles in a jet and re-cluster them with a 
   smaller jet radius Rsub < R
2. Keep all subjets for which ptsubjet > zcut pt
3. Recombine the subjets to form the trimmed jet

recluster

on scale Rsub

discard subjets

with < zcut pt

Krohn, Thaler and Wang (2010)

• Complicated algorithm with many parameters
• Can we compute groomed mass distributions?
• Yes ! Dasgupta, Fregoso, SM and Salam (2013); Dasgupta, Fregoso, SM and Powling (2013)

(see talks at Boost 2013 by G. Salam and myself)
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A recap: soft-gluon phase space
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trimmed

Trimming
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• The action of a groomer is to remove some of the allowed 
   phase space (typically soft and soft-collinear)
• What are the consequences for physical observables, e.g. 
   the jet mass ? 
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trimmed

for fixed coupling:

Σ(trim)(ρ) ! exp

[

−αsCF

2π

(

−3

2
ln

1

ρ
+ Θ(ρ − zcut) ln2 1

ρ
+

+Θ(zcut − ρ)

(

ln2 1

zcut
+ 2 ln

zcut

ρ
ln

1

zcut

)

+ Θ(zcutr
2 − ρ) ln2 zcutr2

ρ

)]

. (4.9)

Eq. (4.7) resums terms αn
s L2n and αn

s L2n−1 in Σ(ρ) (neglecting finite zcut effects and

terms enhanced by powers of ln zcut). It also resums all terms αn
s Ln+1 in ln Σ(ρ). To ob-

tain what is commonly referred to as NLL accuracy, i.e. all terms αn
s Ln in ln Σ(ρ), would

require a treatment of several additional effects: the two-loop β-function and cusp anoma-

lous dimension, non-global logarithms involving resummation of terms ln(z2
cutr

2/ρ), related

clustering logarithms, and multiple-emission effects on the observable. The clustering loga-

rithms will depend on the jet algorithm used for the trimming, but the rest of the structure

will be independent of this (as long as the algorithm belongs to the generalised-kt family).

These terms are all relatively straightforward to include, since they follow the structure of

the plain jet-mass distribution. However, we leave their study to future work. Analogous

results can be also derived for gluon-induced jets. Explicit expressions are collected in

appendix A.

4.3 Comparison with Monte Carlo results

One test of Eq. (4.7) is to compare it to the Monte Carlo results. We do this in Fig. 4

where the left-hand plots show the trimmed-mass distribution as obtained with Monte

Carlo simulation and the right-hand plots shows the corresponding analytical results.7

The upper row is for quark-initiated jets, while the lower one is for gluon-initiated jets.

Two sets of trimming parameters are shown, to help visualize the dependence on them.

The three regions of ρ are clearly distinguishable in each plot, with a close corre-

spondence of the Monte Carlo and analytic shapes and transition points, as well as their

dependence on the trimming parameters. Specifically, in the case of quark jets, for ρ > zcut,

one sees a linear rise with ln 1/ρ. For ρ < zcut, down to ρ = r2zcut there is an approximate

plateau, whose height increases for smaller zcut, as expected from the ln 1/zcut term for

this region in the LO formula, Eq. (4.4). For ρ < r2zcut, the linear rise starts again, but is

quickly suppressed by a Sudakov form factor, giving the usual jet-mass type peak. The case

of gluon-initiated jets is similar, although the single-logarithmic region is not flat, because

of the specific choices of zcut.

7 Resummed expressions for the various taggers (as well as for the plain jet mass) contain integrals of

the strong coupling αs(k
2
t ). In order to evaluate these integrals down to low scales, we must introduce

a prescription to deal with the non-perturbative region. We decide to freeze the coupling below a non-

perturbative scale µNP:

αs(k
2
t ) = α1-loop

s (k2
t )Θ

`

k2
t − µ2

NP

´

+ α1-loop
s (µ2

NP)Θ
`

µ2
NP − k2

t

´

,

where α1-loop
s (k2

t ) is the usual one-loop expression for the strong coupling, i.e. its running is evaluated with

β0 only. We use αs(mZ) = 0.118, nf = 5 and µNP = 1 GeV throughout this paper.

– 11 –
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line of constant 

• One emission 
   sets a mass m
• Need to veto 
   emissions that 
   would give too 
   big a mass (blue)
• Trimming here 
   has no effect
• Probability of 
   having a mass less 
   than m is given by:

Trimmed mass at LL

m2 = 2pq · pg ' z(1� z)✓2p2
T
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trimmed

for fixed coupling:

Σ(trim)(ρ) ! exp
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Eq. (4.7) resums terms αn
s L2n and αn

s L2n−1 in Σ(ρ) (neglecting finite zcut effects and

terms enhanced by powers of ln zcut). It also resums all terms αn
s Ln+1 in ln Σ(ρ). To ob-

tain what is commonly referred to as NLL accuracy, i.e. all terms αn
s Ln in ln Σ(ρ), would

require a treatment of several additional effects: the two-loop β-function and cusp anoma-

lous dimension, non-global logarithms involving resummation of terms ln(z2
cutr

2/ρ), related

clustering logarithms, and multiple-emission effects on the observable. The clustering loga-

rithms will depend on the jet algorithm used for the trimming, but the rest of the structure

will be independent of this (as long as the algorithm belongs to the generalised-kt family).

These terms are all relatively straightforward to include, since they follow the structure of

the plain jet-mass distribution. However, we leave their study to future work. Analogous

results can be also derived for gluon-induced jets. Explicit expressions are collected in

appendix A.

4.3 Comparison with Monte Carlo results

One test of Eq. (4.7) is to compare it to the Monte Carlo results. We do this in Fig. 4

where the left-hand plots show the trimmed-mass distribution as obtained with Monte

Carlo simulation and the right-hand plots shows the corresponding analytical results.7

The upper row is for quark-initiated jets, while the lower one is for gluon-initiated jets.

Two sets of trimming parameters are shown, to help visualize the dependence on them.

The three regions of ρ are clearly distinguishable in each plot, with a close corre-

spondence of the Monte Carlo and analytic shapes and transition points, as well as their

dependence on the trimming parameters. Specifically, in the case of quark jets, for ρ > zcut,

one sees a linear rise with ln 1/ρ. For ρ < zcut, down to ρ = r2zcut there is an approximate

plateau, whose height increases for smaller zcut, as expected from the ln 1/zcut term for

this region in the LO formula, Eq. (4.4). For ρ < r2zcut, the linear rise starts again, but is

quickly suppressed by a Sudakov form factor, giving the usual jet-mass type peak. The case

of gluon-initiated jets is similar, although the single-logarithmic region is not flat, because

of the specific choices of zcut.

7 Resummed expressions for the various taggers (as well as for the plain jet mass) contain integrals of

the strong coupling αs(k
2
t ). In order to evaluate these integrals down to low scales, we must introduce

a prescription to deal with the non-perturbative region. We decide to freeze the coupling below a non-

perturbative scale µNP:

αs(k
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,
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t ) is the usual one-loop expression for the strong coupling, i.e. its running is evaluated with

β0 only. We use αs(mZ) = 0.118, nf = 5 and µNP = 1 GeV throughout this paper.

– 11 –

log

R

✓

log

1

z

z = zcut

✓ = Rsub

smaller ρ = m2 / (R2 pT
2)

• First transition 
   point at ρ = zcut
• Soft & soft-
   collinear radiation 
   is trimmed away
• Only single logs!

Trimmed mass at LL
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trimmed

Trimmed mass at LL

for fixed coupling:

Σ(trim)(ρ) ! exp

[

−αsCF

2π
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. (4.9)

Eq. (4.7) resums terms αn
s L2n and αn

s L2n−1 in Σ(ρ) (neglecting finite zcut effects and

terms enhanced by powers of ln zcut). It also resums all terms αn
s Ln+1 in ln Σ(ρ). To ob-

tain what is commonly referred to as NLL accuracy, i.e. all terms αn
s Ln in ln Σ(ρ), would

require a treatment of several additional effects: the two-loop β-function and cusp anoma-

lous dimension, non-global logarithms involving resummation of terms ln(z2
cutr

2/ρ), related

clustering logarithms, and multiple-emission effects on the observable. The clustering loga-

rithms will depend on the jet algorithm used for the trimming, but the rest of the structure

will be independent of this (as long as the algorithm belongs to the generalised-kt family).

These terms are all relatively straightforward to include, since they follow the structure of

the plain jet-mass distribution. However, we leave their study to future work. Analogous

results can be also derived for gluon-induced jets. Explicit expressions are collected in

appendix A.

4.3 Comparison with Monte Carlo results

One test of Eq. (4.7) is to compare it to the Monte Carlo results. We do this in Fig. 4

where the left-hand plots show the trimmed-mass distribution as obtained with Monte

Carlo simulation and the right-hand plots shows the corresponding analytical results.7

The upper row is for quark-initiated jets, while the lower one is for gluon-initiated jets.

Two sets of trimming parameters are shown, to help visualize the dependence on them.

The three regions of ρ are clearly distinguishable in each plot, with a close corre-

spondence of the Monte Carlo and analytic shapes and transition points, as well as their

dependence on the trimming parameters. Specifically, in the case of quark jets, for ρ > zcut,

one sees a linear rise with ln 1/ρ. For ρ < zcut, down to ρ = r2zcut there is an approximate

plateau, whose height increases for smaller zcut, as expected from the ln 1/zcut term for

this region in the LO formula, Eq. (4.4). For ρ < r2zcut, the linear rise starts again, but is

quickly suppressed by a Sudakov form factor, giving the usual jet-mass type peak. The case

of gluon-initiated jets is similar, although the single-logarithmic region is not flat, because

of the specific choices of zcut.

7 Resummed expressions for the various taggers (as well as for the plain jet mass) contain integrals of

the strong coupling αs(k
2
t ). In order to evaluate these integrals down to low scales, we must introduce

a prescription to deal with the non-perturbative region. We decide to freeze the coupling below a non-

perturbative scale µNP:

αs(k
2
t ) = α1-loop

s (k2
t )Θ

`

k2
t − µ2

NP

´

+ α1-loop
s (µ2

NP)Θ
`

µ2
NP − k2

t

´

,

where α1-loop
s (k2

t ) is the usual one-loop expression for the strong coupling, i.e. its running is evaluated with

β0 only. We use αs(mZ) = 0.118, nf = 5 and µNP = 1 GeV throughout this paper.
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Trimmed mass: MC vs analytics
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Dasgupta, Fregoso, SM and Salam (2013)

Modified LL (MLL):  LL + hard collinear + running coupling

• Trimming is active (and aggressive) for zcut <ρ < Rsub2/R2 zcut 
• Not active below because of fixed Rsub
• Can we build a more dynamical groomer ?
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1. Undo the last stage of the C/A clustering. Label the two   
    subjets j1 and j2 .

2. If 

   then deem j to be the soft-dropped jet.

3. Otherwise redefine j to be the harder subjet and iterate.

1-prong jets can be either kept (grooming mode) or discarded (tagging mode)

Soft Drop Larkoski, SM, Soyez and Thaler (2014)

1 2

1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with
numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets
[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques
have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–
89], and jet substructure is likely to become even more relevant with the anticipated increase
in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there
is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These
include more traditional jet mass and jet shape distributions [90–95] as well as more so-
phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered
the analytic behavior of three of the most commonly used jet tagging/grooming methods—
trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass
distributions, this study showed how their qualitative and quantitative features could be un-
derstood with the help of logarithmic resummation. Armed with this analytic understanding
of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)
which exhibits some surprising features in the resulting groomed jet mass distribution, in-
cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],
and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-
ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like
any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in
order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying
event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two
constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an
angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree
of jet grooming is controlled by zcut and �, with � !1 returning back an ungroomed jet. As
we explain in Sec. 2, this procedure can be extended to jets with more than two constituents
with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic
behavior of the soft drop procedure, particularly as the angular exponent � is varied. There
are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –

Butterworth, Davison, Rubin and Salam (2008)
Dasgupta, Fregoso, SM and Salam  (2013)

• Generalisation of the (modified) Mass Drop procedure
• no mass drop condition (not so important)
• mMDT recovered for β=0
• some inspiration from semi-classical jets Tseng and Evans (2013)
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Soft Drop as a groomer
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Soft Drop vs Trimming
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soft dropped

Soft Drop and mMDT
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soft dropped

Soft Drop as a tagger
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Soft-dropped ECF

Trimmed

log

R

✓

log

1

z

when � is small. Similarly, because the soft drop procedure does not change the structure of
collinear emissions, observables like the groomed jet energy are IRC safe. Note that running
� > 0 soft drop in tagging mode is not IRC safe, since a jet would (would not) be tagged if
it contained two (one) collinear particles.

In the strict � = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.
Because soft-collinear radiation is vetoed, the resulting jet mass (and C

(↵)
1 ) distributions will

only exhibit single logarithms, as emphasized in Refs. [59, 60]. Because the structure of
collinear emissions is modified, observables like groomed jet energy are only IRC safe if soft
drop is used in tagging mode, since that forces the jet to have a hard two-prong structure,
which regulates the collinear singularity. We will see in Sec. 5, however, that � = 0 grooming
mode is still “Sudakov safe” [105].

Finally, for � < 0, there are no logarithmic structures for observables like groomed jet
mass at arbitrarily low values of the observable. E↵ectively, soft drop with negative � acts
like a cut which enforces C

(↵)
1 > z

↵/|�|
cut , and this cut regulates the soft-collinear singularities.

For example, � = �1 roughly corresponds to a cut on the relative transverse momentum of
the two prongs under scrutiny. Like for � = 0, � < 0 is only IRC safe in tagging mode.

3 Energy Correlation Functions after Soft Drop

Generalized energy correlation functions ECF (N, ↵) and their double ratios C
(↵)
N�1 were in-

troduced in Ref. [44] (see also Refs. [32, 106] for N = 2). In this paper, we only consider the
double ratio for N = 2 (hereafter referred to as simply the energy correlation functions):

C
(↵)
1 =

ECF (2, ↵) ECF (0, ↵)
ECF (1, ↵)2

, (3.1)

where

ECF (0, ↵) = 1,

ECF (1, ↵) =
X

i2jet

pT i,

ECF (2, ↵) =
X

i<j 2jet

pT i pTj

✓
�Rij

R0

◆↵

. (3.2)

In this study, we will measure C
(↵)
1 on jets which have been groomed according to the soft-

drop declustering described above. We will work to lowest non-trivial order in zcut, such that
we can ignore the e↵ect of grooming on ECF (1, ↵). As stated above, we will focus on central
jets (y = 0) and assume R0 ⌧ 1. In those limits,

C
(↵)
1 '

X

i<j

zizj

✓
✓ij

R0

◆↵

, (3.3)

where zi ' Ei/Ejet is the energy fraction carried by particle i, and ✓ij is the opening angle
between particles i and j. Up to power-suppressed e↵ects in R0, the results of this paper can

– 7 –

when � is small. Similarly, because the soft drop procedure does not change the structure of
collinear emissions, observables like the groomed jet energy are IRC safe. Note that running
� > 0 soft drop in tagging mode is not IRC safe, since a jet would (would not) be tagged if
it contained two (one) collinear particles.

In the strict � = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.
Because soft-collinear radiation is vetoed, the resulting jet mass (and C

(↵)
1 ) distributions will

only exhibit single logarithms, as emphasized in Refs. [59, 60]. Because the structure of
collinear emissions is modified, observables like groomed jet energy are only IRC safe if soft
drop is used in tagging mode, since that forces the jet to have a hard two-prong structure,
which regulates the collinear singularity. We will see in Sec. 5, however, that � = 0 grooming
mode is still “Sudakov safe” [105].

Finally, for � < 0, there are no logarithmic structures for observables like groomed jet
mass at arbitrarily low values of the observable. E↵ectively, soft drop with negative � acts
like a cut which enforces C

(↵)
1 > z

↵/|�|
cut , and this cut regulates the soft-collinear singularities.

For example, � = �1 roughly corresponds to a cut on the relative transverse momentum of
the two prongs under scrutiny. Like for � = 0, � < 0 is only IRC safe in tagging mode.

3 Energy Correlation Functions after Soft Drop

Generalized energy correlation functions ECF (N, ↵) and their double ratios C
(↵)
N�1 were in-

troduced in Ref. [44] (see also Refs. [32, 106] for N = 2). In this paper, we only consider the
double ratio for N = 2 (hereafter referred to as simply the energy correlation functions):

C
(↵)
1 =

ECF (2, ↵) ECF (0, ↵)
ECF (1, ↵)2

, (3.1)

where

ECF (0, ↵) = 1,

ECF (1, ↵) =
X

i2jet

pT i,

ECF (2, ↵) =
X

i<j 2jet

pT i pTj

✓
�Rij

R0

◆↵

. (3.2)

In this study, we will measure C
(↵)
1 on jets which have been groomed according to the soft-

drop declustering described above. We will work to lowest non-trivial order in zcut, such that
we can ignore the e↵ect of grooming on ECF (1, ↵). As stated above, we will focus on central
jets (y = 0) and assume R0 ⌧ 1. In those limits,

C
(↵)
1 '

X

i<j

zizj

✓
✓ij

R0

◆↵

, (3.3)

where zi ' Ei/Ejet is the energy fraction carried by particle i, and ✓ij is the opening angle
between particles i and j. Up to power-suppressed e↵ects in R0, the results of this paper can

– 7 –

Larkoski, Salam and Thaler (2013)
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1 ) f.c.= exp
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1 � zcut
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log
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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cut , thus regulating the soft-collinear behavior. The limiting values of Eq. (3.9)

behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
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1 < zcut vanishes and we obtain the expected mMDT
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3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
(↵)
1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C

(↵)
1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C

(↵)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C

(↵)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
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can then be expressed as an explicit sum over uncorrelated emissions as
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satisfy the soft-drop requirement on their own. While this is true, the contributions from such emissions are

subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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1 > z
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cut , thus regulating the soft-collinear behavior. The limiting values of Eq. (3.9)

behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C

(↵)
1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
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1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C

(↵)
1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C

(↵)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C

(↵)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
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can then be expressed as an explicit sum over uncorrelated emissions as
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subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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cut , thus regulating the soft-collinear behavior. The limiting values of Eq. (3.9)

behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C
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1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.
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speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C
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we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
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1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C
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1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
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1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
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1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C
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1 and pass the soft drop requirement.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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1 > z

↵/|�|
cut , thus regulating the soft-collinear behavior. The limiting values of Eq. (3.9)

behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C

(↵)
1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
(↵)
1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C

(↵)
1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C

(↵)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C

(↵)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
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can then be expressed as an explicit sum over uncorrelated emissions as
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subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C
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1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
(↵)
1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C
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1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C
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1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C
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1 and pass the soft drop requirement.
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subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
C

(↵)
1 > z
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behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C

(↵)
1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
(↵)
1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C

(↵)
1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C

(↵)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C

(↵)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
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can then be expressed as an explicit sum over uncorrelated emissions as
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subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C
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1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
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1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C
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1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
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1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C
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1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
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1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
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1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C
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subleading to the accuracy to which we work and can therefore be ignored.
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which is the exponential of the cumulative distribution at LO (i.e. the integral of Eq. (3.6)).
For � < 0, we find an expression analogous to Eq. (3.9), but with a lower bound which enforces
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cut , thus regulating the soft-collinear behavior. The limiting values of Eq. (3.9)

behave as expected. For � ! 1, the regions above and below zcut give identical results, so
they can be combined to return the ungroomed distribution. For � = 0, the coe�cient of
the double logarithm in the region C

(↵)
1 < zcut vanishes and we obtain the expected mMDT

single logarithmic result.

3.3 Multiple Emissions

Multiple gluon emissions within a jet can a↵ect the value of C
(↵)
1 . While this e↵ect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so
it is worth considering how they might a↵ect the C

(↵)
1 distribution. For multiple emissions,

we need to determine what region of phase space can have several emissions that contribute
to the measured value of the observable. To logarithmic accuracy, these emissions must give
comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(↵)
1 , the region of phase space where

multiple emissions contribute can be seen in Fig. 2. For the green emission that sets the
value of C

(↵)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(↵)
1 . Everywhere along this diagonal line satisfies the soft drop

groomer, and therefore all emissions that contribute to the value of C
(↵)
1 pass the soft drop

phase space requirements.4 Also, because C/A clustering enforces angular ordering, these
multiple emissions must lie at angles smaller than the first emission that passes the soft drop
requirement. Therefore, accounting for multiple emissions requires including an arbitrary
number of emissions that contribute to C

(↵)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
(↵)
1

can then be expressed as an explicit sum over uncorrelated emissions as

⌃(C(↵)
1 ) =

1X

n=1

nY

m=1

"Z R0

0

d✓m

✓m

Z 1

0
dzm pi(zm)

↵s(m)
⇡
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zm � zcut

✓
✓m

R0

◆�
!

⇥ (✓i�1 � ✓i)

#

4One might worry that if the emission that sets the value of C(↵)
1 lies near the boundary between the

soft-drop groomed region and soft-drop kept region, then emissions that contribute to the observable may not

satisfy the soft-drop requirement on their own. While this is true, the contributions from such emissions are

subleading to the accuracy to which we work and can therefore be ignored.
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MC vs Analytics for α = 2
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• multiple-emission effects also included 
• non-global logs are power-suppressed
• mMDT (β=0) is remarkable: only single (collinear) logs
• improved agreement between MC and analytics
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Figure 3: Left: Distribution of C(0.2)

1

for quark jets (purple) and gluon jets (orange) using

Pythia dijet samples. The sample consists of anti-k
T

jets with radius R = 0.6 and transverse

momentum in the range [400, 500] GeV. Right: Quark versus gluon discrimination curves

using C
(�)

1

for several values of � in Pythia. Also plotted is the leading log approximation

for the discrimination curve, Eq. (3.8).
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Figure 4: Gluon rejection rates at 50% quark e�ciency in Pythia, as a function of �.

Left: fixing the p
T

range to be [400, 500] GeV and sweeping the value of R
0

. Right: fixing

R
0

= 0.6 and sweeping the p
T

range. For all of these cases, small values of � yield the best

discrimination.

of R
0

= 0.4, 0.6, and 0.8. Because our broad conclusions hold for all samples generated, we

only show representative plots to illustrate the quark/gluon performance of C
1

.

In Fig. 3a, we plot the distribution of C(0.2)

1

for jets initiated by quarks and gluons with
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Fig. 8 One minus the gluon-jet efficiency (for compari-
son with Ref. [53]) as a function of β (see Sec. 5.1) for
EEC angularities, calculated using extracted jet properties
from data (solid circles) and dijet Pythia 6 MC simulation
(solid squares) for jets with (a) 60 < pT < 80 GeV and (b)
210 < pT < 260 GeV and |η| < 0.8 reconstructed with the
anti-kt algorithm with R = 0.4. The shaded bands represent
the total systematic uncertainty on the data points.

with this sample dependence. This serves to empha-
sise the importance of data-based validation of quark-
jet/gluon-jet discriminants, as MC simulation may not
correctly describe the jet properties observed in data,
as well as the importance of correct MC event gener-
ator tunes that describe the jet properties and their
potential sample dependence.
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Soft-dropped ECF for q / g separation ?

• recent study by ATLAS using ECF found result far less 
   encouraging than what suggested by LST
• MCs don’t provide good description of shape
• What about using soft-dropped ECF ? (work in progress)
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• What is the amount of energy which has been groomed away ?

• Not collinear safe for β=0 (mMDT) 

On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable
(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed
groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)
singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.
This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the
way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution
of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform
and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize
that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling
energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is

⌃radius(Rg)
f.c.= exp
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative
distribution of the energy drop at fixed groomed jet radius is

e⌃(Rg,�E) f.c.= exp
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-
bution of the groomed energy drop to be

⌃energy-drop(�E) =
log zcut �Bi
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(5.7)

for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.
The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1� ↵s

⇡
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. (5.8)
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On the other hand, Eq. (5.2) has a smooth � ! 0 limit, and therefore is still calculable
(despite being IRC unsafe). Specifically, we are calculating the �E distribution at a fixed
groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC unsafe)
singularity at Rg ! 0, but this is regulated by the Sudakov factor in the Rg distribution.
This property was referred to as “Sudakov safety” in Ref. [105]. As we will now show, the
way in which IRC unsafety but Sudakov safety manifests itself for �E is rather peculiar.

The behavior of �E for � = 0 is easiest to study by computing the cumulative distribution
of the energy drop at fixed coupling. We will also take the Laplace conjugate parameter ⌫ !
1 to suppress multiple emissions e↵ects. This limit removes the inverse Laplace transform
and turns the exponential factor in Eq. (5.4) into the constraint that z > �E . We emphasize
that the ⌫ ! 1 limit is only taken to simplify the following discussion; the fixed-coupling
energy loss distribution with the full multiple emissions e↵ect exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is
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where we have ignored terms suppressed by positive powers of zcut and �E . The cumulative
distribution of the energy drop at fixed groomed jet radius is
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Plugging these expressions into Eq. (5.2) in the ⌫ ! 1 limit, we find the cumulative distri-
bution of the groomed energy drop to be
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for �E < zcut. At this order, the cumulative distribution is constant for �E > zcut.
The expression in Eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in ↵s, we find

⌃energy-drop(�E) = 1� ↵s
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• Compute to all orders and then take β=0

• finite result which does not depend on αs (at fixed coupling)
• running coupling corrections appear to be small

Thus, the expansion in powers of the strong coupling is actually an expansion in ↵s/�, which
diverges order-by-order in perturbation theory for � ! 0. Thus, as advertised, the energy
drop distribution is not IRC safe for � = 0. However, the � ! 0 limit of Eq. (5.7) can be
taken before expanding in ↵s. The � ! 0 limit yields the simple and surprising result

⌃energy-drop(�E)�=0 =
log zcut �Bi

log �E �Bi
, (5.9)

which is completely independent of ↵s! So while the strong coupling constant ↵s was necessary
to calculate �E , the leading behavior is independent of the value of ↵s.

We can attribute this behavior to the fact that �E is a Sudakov safe observable for � = 0.
The singular region of phase space at Rg ! 0 is exponentially suppressed by the Sudakov
factor in ⌃radius(Rg). This exponential suppression balances the exponential increase in the
number of groomed emissions in such a way that �E is independent of ↵s. In fact, �E is
independent of the total color of the jet at fixed coupling, and only depends on the flavor
of the jet through the subleading terms in the splitting functions Bi. When the running
coupling is included, we will see that the dominant contribution to the �E distribution is still
independent of ↵s, with only weak dependence controlled by the QCD �-function.

5.3 Non-Global Logarithms

The ungroomed jet energy E0 is clearly a↵ected by non-global contributions, since emissions
outside of the jet can radiate energy into the jet. Because the soft drop procedure removes
soft wide-angle radiation, we expect that the groomed jet energy Eg should have no non-
global contributions. In principle, we could calculate the Eg distribution directly to show the
absence of non-global logarithms. In practice, though, it is hard to interpret the meaning of
Eg without invoking some reference energy scale. Here, we are using E0 as a reference, which
is not ideal since E0 has non-global contributions. That said, we will find that the E0 and �E

distributions have exactly the same non-global logarithms, implying that the Eg distribution
is wholly absent of them.

Analogous to Sec. 3.4, we can do a simple calculation of the non-global contribution to
�E . At lowest order for a narrow jet of radius R0, the non-global logarithms can be computed
from

1
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This shows that non-global logarithms are not power-suppressed for the energy loss distribu-
tion regardless of �. Moreover, the coe�cient of the non-global logarithms are the same for
the ungroomed distribution (� !1) as for the groomed distribution (finite �). This implies
that the groomed jet energy Eg cannot contain any non-global logarithms.
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Sudakov Safety Larkoski and Thaler (2013)
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Are we learning something deep about QCD (or QFTs in general) ?
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Conclusions
• Jet substructure is playing an important role in LHC 
   phenomenology (searches and measurements)

• In the last two years we’ve begun to reach a deeper (analytic) 
   understanding of groomers and taggers

• Soft drop is an example of this knowledge put at work 

• Work in progress:
• pheno aspects of soft drop (q/g, non-pert. effects)
• Sudakov safety

Thank you !
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BACK UP
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Groomed jet radius
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• Analytic control opens up the possibility of understanding 
   different properties of groomed jets

• Good agreement between analytics, MC and jet-area methods
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