

Jet Energy Corrections in CMS

Multiple Cone Sizes

Alexx Perloff¹ on behalf of the CMS collaboration

¹Department of Physics and Astronomy Texas A&M University

Tuesday 19th August, 2014

BOOST2014 - University College London

™ Motivation

Multiple cone size studies

- Study was done to identify the optimal cone sizes to store in our datasets
 - i.e. the cone size which has the best jet response and resolution after correction
- In the past we stored R = 0.5 and R = 0.7 jets
 - Note: We now use R = 0.4 instead of R = 0.5
- This is what motivated that switch!
- CMS analyses have used cone sizes R = 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.5

Future

- New studies being done to take advantage of jets with many cone sizes [3, 4]
 - ullet i.e. Look at same event many times, each time looking for jets with different R
- Use this additional information to improve signal to background discrimination

BOOST2014 A.Perloff Tuesday 19th August, 2014 2 / 25

Jets and Jet Energy Corrections at CMS

Corrections (Factorized Approach)

- Factorized approach to jet energy corrections
- Anti- k_T jets with R = 0.4 used by default, clustered from Particle Flow (PF) candidates
- Corrections for jets with and without charged hadron subtraction (CHS) available
 - CHS: Remove charged hadrons that can be traced back to pileup vertices, then recluster the jets
 - There will be a talk on Thursday which will provide more details on CHS

BOOST2014 A.Perloff Tuesday 19th August, 2014 3/3

CMS JEC Stages: Pileup corrections

 \bullet Left: Additional energy due to pileup as a function of η (AK5 PFJets)

Right: Pileup composition in CMS

BOOST2014 A.Perloff Tuesday 19th August, 2014 4/

ĀМ CMS JEC Stages: η and p_T corrections

- η and p_T -dependent scaling factor fully derived from MC after applying pileup corrections
- Multiplicative scale factors shown for three p_T values
- Final correction stage for MC

BOOST2014 A.Perloff

\blacksquare CMS JEC Stages: η and p_T residual corrections

ullet Left: Correction factor for AK5 PFJets derived from dijet balancing using the Missing- E_T Projection Fraction (MPF) method. Below 5% within the tracker region.

ullet Center/Right: Absolute correction factor in barrel derived from $Z o \mu \mu + jet$

BOOST2014 A.Perloff Tuesday 19th August, 2014 6/

TM CMS JEC Uncertainties

- Total uncertainty and sources for AK5 PFJets as a function of (left) p_T and (right) η
- Sub-percent uncertainty with central jet p_T > 100 GeV

BOOST2014 A.Perloff Tuesday 19th August, 2014 7/5

AM Overview

In this talk

- Jet energy corrections:
 - Pileup removal
 - Relative and absolute corrections
- Closure of fully corrected jets (MC)
- Resolution and optimization of cone sizes

Technical Details

Samples

- Used 2 QCD MC samples, one with pileup and one without
 - Same generator level events in each sample
 - Only difference is the pileup mixing step

Cone Sizes

• R = 0.2 through R = 1.0 in steps of 0.1

These are the things we get for "free" when we move from a large to a small cone size

- offset= $p_T^{PU} p_T^{noPU}$ scales with $\mu \cdot a_{jet}$ and a_{jet} scales with R^2
 - $R = 0.5 \Rightarrow R = 0.4$: We reduce the offset by $\sim \frac{1}{3}$
- ② JER noise term scales with $\sqrt{\mu \cdot a_{jet}}$
 - $R=0.5 \Rightarrow R=0.4$: At low p_T we can improve jet energy resolution (JER) by up to 20%
 - The question is if other figures of merit degrade to compensate (e.g. JEC closure, offset p_T dependence, matching efficiencies, Q/G tagging, etc.)

BOOST2014 A.Perloff Tuesday 19th August, 2014 9 /

Pileup Subtraction

Offset Before Pileup Corrections ($|\eta| < 1.3$)

- lacktriangledown μ is defined as the true number of pileup interaction
- Offset is defined as the average difference between PU jet p_T and no PU jet p_T
- The average offset increases as jet p_T goes higher due to jet reconstruction non-linearities
- Higher average offset for larger cone sizes (offset is directly proportional to jet area)

ĀM

Pileup Subtraction

CMS

Offset **After** Pileup Corrections ($|\eta| < 1.3$)

- Average difference between p_T^{jet} with PU added (PU sample) and p_T^{jet} without PU added (no PU sample)
- Residual average offsets are smaller for smaller cone sizes
 - This is expected since the amount of pileup you have to remove goes with R²
 - There is $\left(\frac{1.0}{0.3}\right)^2 = 11$ times more pileup in a cone of R = 1.0 than there is in a cone of R = 0.3

- Rate of data and MC pileup jets relative to the rate of real (MC) jets [8]
- ullet The rate of overlapping jets increases quadratically with N_{PV}
 - This rate increases even more if you consider more than two overlapping jets
- The probability of two overlapping jets with a given total p_T (i.e. merged real and PU jets) is given by $p\left(overlap\middle|p_T\right) \approx N_{pu}^2 \frac{a_{pu}^2}{a_{pt}^{6.2}}$
 - ullet A change in the cone size will have a significant effect on the number of pileup jets (R^4 dependence)

- $R = 0.5 \Rightarrow R = 0.4$: With an R^4 dependence we actually decrease PU jet rate by 60%
- The data and MC do not match in the high N_{PV} region due to pileup reweighting
 - The pileup is poorly modeled in this region
 - It is more important that we have proper reweighting in the region of N_{PV} representing the majority of our events

All/Real Jet Rate

ĀМ

Relative and Absolute MC-Truth Corrections

Corrections Vs. η in bins of p_T

- These JEC compensate for changing jet responses due to η and p_T dependencies
- Very similar corrections for most cone sizes
- The average corrections are on the order of 10% for $|\eta| < 1.3$ and up to 40% in the high η regions
- More variation at low p_T , especially fo R = 0.2

BOOST2014 A.Perloff

Closure Vs. p_T ĀМ

- The response (p_T^{RECO}/p_T^{GEN}) of the jets after being fully corrected
- Better closure for larger R cones, especially at low p_T
- All cone sizes equivalently good at high p_T
- Response mostly contained within $\pm 1\%$
- Closure is decent even for a cone size of R = 0.2

BOOST2014 A.Perloff

ĀМ

Resolution Due to Detector & Reco Effects

After Pileup Removal $(|\eta| < 1.3)$

- The resolution of the response of the jets for various *μ* bins
- The resolution degrades with larger cone size at low p_T^{GEN} and with higher μ
- At high p_T^{GEN} the resolution of the jets is the same for all cone sizes and all μ

BOOST2014 A.Perloff Tuesday 19th August, 2014 15

ĀМ

Optimal Cone Size - Detector & Reco Effects

After Pileup Removal

- The response resolution as a function of cone size for a given p_{T}^{GEN} and μ bin
- The optimal cone size (for each detector region) is chosen as the one with the smallest response resolution
- With increasing pileup the optimal cone size becomes smaller, but the more you go forward in the detector, the more you want larger cones

- These are summary plots of the information from the last slide
 - These include all μ bins for a given p_T^{GEN}
 - Each point represents the cone size with the best resolution
- The more you go forward in the detector, the more you want larger cones
- Note: The error bars include cone sizes whose resolution is within 5% of the optimal size

BOOST2014 A.Perloff Tuesday 19th August, 2014 17/25

ĀМ

Resolution Fits After Pileup Removal

√s = 8 TeV

 Equation parameterizing the resolution

$$\frac{\sigma}{p_T} = \sqrt{\frac{N_0 \cdot |N_0| + \sigma_{PU}^2 \mu A}{p_T^2} + \frac{S^2}{p_T} + C}$$

- Three terms:
 - Noise
 - $\sqrt{\mu \cdot a_{jet}}$ dependence
 - Stochastic
 - Constant in $\mu \cdot a_{iet}$
 - Constant
 - Constant in $\mu \cdot a_{iet}$

20

40

60

80

100 $\mu \times A$

BOOST2014 A.Perloff

ĀM

Resolution Fits After Pileup Removal

CMS

- The stochastic and constant terms do not significantly change with pileup or R
- The stochastic term show a slight benefit when using PFchs
- The noise term can be effectively parameterized by simple square-root dependence on $\mu{\times}A$
 - PFchs is significantly better at reducing the noise term at high $\mu{\times}A$
 - This improvement is not as pronounced for smaller cone sizes, especially at small $\mu \times A$

BOOST2014 A.Perloff Tuesday 19th August, 2014 1:

IM Summary

- We have validated the performance of the jet energy corrections over a wide range of cone sizes
- The performance of the JEC for all cone sizes is very good
- Rate of PU jets increases rapidly for larger cone sizes
- Smaller cone sizes provides a benefit in removing PU
 - More stable residual offset left for smaller cone sizes after the pileup corrections
 - Better low p_T resolution
- Relative and absolute corrections have a minimal dependence on jet radius
- ullet MC has the expected JER dependence on μ and jet area
 - ullet Resolution increases with μ and with cone size
 - ullet At high p_T^{GEN} resolution is independent of cone size
 - Optimal resolution for all p_T and μ bins found at R=0.4
- Look for analyses to start using more cone sizes very soon!
 - See the benefit of using more cone sizes [3, 4]

BOOST2014 A.Perloff Tuesday 19th August, 2014 20 / 25

References

- [1] Matteo Cacciari and Gavin P. Salam. Pileup subtraction using jet areas. Physics Letters B, 2008.
 - Matteo Cacciari, Gavin P. Salam, and Gregory Soyez.
 The catchment area of jets.
 Journal of High Energy Physics, 2008.
- [3] Y.-T. Chien.
- Telescoping Jets: Multiple Event Interpretations with Multiple R's.
 - ► arXiv:1304.5240 [hep-ph] April 2013.
- [4] Y.-T. Chien, D. Farhi, D. Krohn, A. Marantan, D. Lopez Mateos, and M. Schwartz. Quantifying the power of multiple event interpretations.
- ▶ arXiv:1407.2892 [hep-ph] , July 2014.
- [5] Henning Kirschenmann.Jet performance in CMS, July 2013.EPS HEP 2013. Thursday. July 18, 2013 at 11:15 am.
 - EPS HEP 2013, Thursday, July 18, 2013 at 11:15 am.

 The CMS Collaboration.

 Determination of iet energy calibration and transverse momentum resolution in cms.
 - Journal of Instrumentation, 2011.

 ▶ arXiv:1107.4277v1 [physics.ins-det]
- The CMS Collaboration.
 Jet energy scale performance in 2011.
 CMS Performance Note, 2012.
 CMS DP-2012/006.
- [8] The CMS Collaboration.
 Pileup Jet Identification.
 - Technical Report CMS-PAS-JME-13-005, CERN, Geneva, 2013.

Backup Slides

BOOST2014 A.Perloff Tuesday 19th August, 2014 22 / 25

\mathbf{M} Missing- E_T Projection Fraction

- Missing transverse energy projection fraction (MPF) is based on the fact that Z+Jets events have no intrinsic $\not\!E_T$
 - At the parton level, the Z is balanced by the hadronic recoil in the transverse plane

$$\vec{p}_T^Z + \vec{p}_T^{recoil} = 0$$

For reconstructed objects we need to add the detector responses

$$R_Z \vec{p}_T^Z + R_{recoil} \vec{p}_T^{recoil} = - \vec{E}_T$$

• Response given by the projection of $\vec{E_T}$ along the axis of the Z

$$R_{recoil} = R_Z + rac{ec{\mathcal{F}}_T \cdot ec{p}_T^Z}{\left(p_T^Z\right)^2} \equiv R_{MPF}$$

- We also saw $\alpha = \frac{p_T^{\rm jet2}}{T_T^2}$, which makes sure that we veto on second jet activity
 - Removes the influence of soft radiation
- More details found in [6]

Extrapolation Uncertainties

- Single particle response (SPR) for hadrons:
 - Measured in data by using isolated tracks and comparing the energy deposited in the calorimeters to the momentum as measured by the tracker
 - \bullet data/MC disagreement is less than $\pm 3\%$
 - SPR for PF is less than 2% and is better at low p_T where the tracker measurement is dominant. When p_T is high, the calorimeter measure is dominant in the PF algorithm.
- Fragmentation properties of the generators:
 - ullet Ratio negligible at $p_T \sim 80~{
 m GeV}$ and grows to $\sim 1.5\%$ at low and high p_T
- More information can be found at [6]

BOOST2014 A.Perloff Tuesday 19th August, 2014

Flavor Uncertainties

- Flavor uncertainties based on the PYTHIA/Herwig++ differences in uds/c/b-quark and gluon responses
- Default: extrapolate from Z+Jet mixture to the dijet QCD mixture
- Access to individual sources also given
 - i.e. can make a mixture specific to your signal or background
- More information found at [5]

BOOST2014 A.Perloff Tuesday 19th August, 2014 25 / 25