News from the HEPTopTagger

arXiv:1312.1504 & work with C. Anders, C. Bernaciak, G. Kasieczka, T. Plehn, G. Salam, and T. Strebler

Torben Schell

Institute for Theoretical Physics, Heidelberg University

Boost 2014 August 21, 2014

HEPTopTagging

reconstruction of boosted hadronic tops

- collimated decay products
 - \rightarrow fat jets
 - \rightarrow reduced combinatorial problems
- SM: number of top quarks vs. collimation
- substructure analysis based on subjet masses

HEPTopTagger – Steps

[arXiv:1006.2833]

- **o** fat jet: C/A R = 1.5, $p_T > 200$ GeV
- hard substructures: mass drop $f_{drop} = 0.8$, $m_i < m_{sub} = 30$ GeV
- **9 filtering**: filter a triple of hard substructures \rightarrow 3 jets (j_1, j_2, j_3)
- **150** mass window: $150 \text{ GeV} < m_{123} < 200 \text{ GeV}$
- mass plane cuts: $0.85 \frac{m_W}{m_t} < \frac{m_{ij}}{m_{123}} < 1.15 \frac{m_W}{m_t}$ $m_{23} \approx m_W$: $0.2 < \arctan \frac{m_{13}}{m_{12}} < 1.3$; else $\frac{m_{23}}{m_{123}} > 0.35$
- **o** consistency: $p_T^{\text{(tag)}} > 200 \text{ GeV}$

Needed improvements

signal efficiency

background sculpting

p_T range

resonance reconstruction

Recent developments

• R = 1.8 with change in cut order $(3 \leftrightarrow 4)$

[arXiv:1312.1504]

- alternative triplet selections
 - maximal $dj_{\text{sum}} = \sum_{(ij)} d_{ij}$ with $d_{ij} = p_{T,i} p_{T,j} (\Delta R_{ij})^4$
 - triplet of hardest subjets
- Boosted Decision Tree ROC curves no window in m_{123} {arctan(m_{13}/m_{12}), m_{23}/m_{123} , m_{123} , (m_w/m_t)_{rec}}

(Alpgen+Pythia6 MLM semilept. $t\overline{t}+\leq 2j$ vs. lept. W+(2-4)j)

Low p_T mode

- target rejected candidates with $p_T \in [150, 200]$ GeV
- focus on type-2 tags
- ullet angular correlations o Fox-Wolfram moments

$$H_I^{\mathsf{x}} = \sum_{i,j=1}^N W_{ij}^{\mathsf{x}} P_I(\cos\Omega_{ij})$$
 with $W_{ij}^U = \frac{1}{N^2}$

 $\bullet \ \, \mathsf{BDT} \colon \left\{\mathsf{arctan}(m_{13}/m_{12}), m_{23}/m_{123}, m_{123}, (m_w/m_t)_\mathsf{rec}, \mathsf{FWMs} \right\}$

	default		low n- mode	
			$low-p_T$ mode	
	(mis)tags [fb]	fraction	(mis)tags [fb]	fraction
type-1	5309	57%	5967	52%
type-2	1283	14%	1863	16%
type-3	2712	29%	3601	32%
ε_S	0.287		0.353	
W+jets	1200		1663	
ε_B	0.007		0.010	

example working point

MultiR Tagger

- there is an optimal $R^{(opt)}$
- reduce R until leaving top mass plateau

$$|m_{123}^{(R)} - m_{123}^{(R_{\mathsf{max}})}| < 0.2 \,\, m_{123}^{(R_{\mathsf{max}})}
ightarrow R_{\mathsf{min}}$$

- estimate as $R_{\min}^{\text{(calc)}} \rightarrow \text{additional variable } R_{\min} R_{\min}^{\text{(calc)}}$
- BDT: { $m_{123}^{(R_{\min})}, f_W^{(R_{\min})}, R_{\min} R_{\min}^{(\text{calc})}$ }, $f_W = \min |m_{ij}/m_{123} (m_W/m_t)_{\text{true}}|$

7 / 12

N-Subjettiness HEPTopTagger

- MultiR working point + rejected events + N-Subjettiness [Thaler, Van Tilburg]
- two different filterings and BDT analyses

passed:
$$R_{\text{filt}} = 0.3$$
, $N_{\text{filt}} = 3$ rejected: $R_{\text{filt}} = 0.2$, $N_{\text{filt}} = 5$ $\{ m_{\text{fat}}^{(\text{filt})}, m_{123}^{(R_{\text{min}})}, f_W^{(R_{\text{min}})}, R_{\text{min}} - R_{\text{min}}^{(\text{calc})}, \tau_i, \tau_i^{(\text{filt})} \} \quad i \leq 3$

Resonance Reconstruction

Benchmark: Event Deconstruction [Soper, Spannowsky, arXiv:1402.1189]

Event generation:

- Pythia8, LHC $\sqrt{s} = 13$ TeV
- signal: $Z' o t_h \overline{t}_h$, $m_{Z'} = 1500$ GeV, $\Gamma(Z') = 65$ GeV
- background: QCD-dijet & $t_h \bar{t}_h$, both $p_T > 400$ GeV
- no detector simulation

Event selection:

- 2 hardest C/A, R = 1.5 fat jets (FastJet)
- require $p_{T,\text{fat}} > 400 \text{ GeV}$ and $|y_{\text{fat}}| < 2.5$
- → dominant background: QCD-dijet

Final State Radiation

- HTT working point + BDT $\{m_{tt}, p_{T,j}\}$
- HTT reconstructs on–shell tops
 - → misses final state radiation
 - \rightarrow sizeable tail in m_{tt} distribution
- BDT: { $m_{tt}, p_{T,j}, m_{ff}^{(filt)}, p_{T,f_i}^{(filt)}$ }

Further optimization

- beyond working point: double top mass window and A-band width $\{m_{tt}, p_{T,j}, m_{ff}^{(filt)}, p_{T,f_i}^{(filt)}, \min(m_{123}), \max(m_{123}), f_W\}, f_W = \max(f_{W,1}, f_{W,2})$
- $\qquad \qquad \mathbf{MultiR} \ \{ m_{tt}, p_{T,j}, m_{ff}^{(\text{filt})}, p_{T,f_j}^{(\text{filt})}, \min(m_{123}^{(R_{\min})}), \max(m_{123}^{(R_{\min})}), f_W^{(R_{\min})}, \max(R_{\min} R_{\min}^{(\text{calc})}) \ \}$
- N-Subjettiness to come

Summary

- signal efficiency
 - ightarrow R=1.8, inverted cut order, BDTs
- background sculpting
 - → alternative triplet selections
- p_T range ✓
 - \rightarrow low- p_T mode
 - \rightarrow high p_T : MultiR, N-Subjettiness HEPTopTagger
- resonance reconstruction
 - → account for final state radiation, MultiR

HEPTopTagger ready for LHC run II

IMPRS

PTFS