Understanding jet grooming through event shapes

Marat Freytsis

Harvard University BOOST 2014 — August 21, 2014

MF, Jesse Thaler in preparation

Jets without jets

$$\begin{split} N_{\rm jet}(p_{T_{\rm cut}},R) &= \sum_{i \in {\rm jets}} \Theta(p_{T_i} - p_{T_{\rm cut}}) \\ \Rightarrow \tilde{N}_{\rm jet}(p_{T_{\rm cut}},R) &= \sum_{i \in {\rm event}} \frac{p_{T_i}}{p_{T_i,R}} \Theta(p_{T_i,R} - p_{T_{\rm cut}}) \end{split}$$

Other jet shapes analogously

Trimming via local jet/subjet properties

[Krohn, Thaler, Wang 0912.1342]

$$\begin{split} p_i^{\mu} &\Rightarrow w_i p_i^{\mu} \\ &= \Theta\left(\frac{p_{T_i,R_{\text{sub}}}}{p_{T_i,R}} - f_{\text{cut}}\right) \Theta(p_{T_i,R} - p_{T_{\text{cut}}}) p_i^{\mu} \end{split}$$

[Bertolini Chan Thaler 1310 7584]

Analytic calculations for jet grooming

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007 Dasgupta, Fregoso, Marzani, Powling, 1307.0013]

More intricate resummation effects in pruning and mMDT than trimming No Sudakov double logs for mMDT!

Analytic calculations for jet grooming

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007 Dasgupta, Fregoso, Marzani, Powling, 1307.0013]

More intricate resummation effects in pruning and mMDT than frimming No Sudakov double logs for mMDT!

Analytic calculations for jet grooming

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007 Dasgupta, Fregoso, Marzani, Powling, 1307.0013]

No Sudakov double logs for mMDT!

Can any of this structure be replicated in jet shapes?

Outline

Event shapes for modified clustering algorithms?

- Event Shape Pruning and modified clustering
- Event Shape Trimming Redux and pileup sensitivity
- Event Shape Mass/Soft Drop and soft-collinear logs

From shape trimming to shape pruning

Pruning:

- 1. Compute $R_{\rm pr} = 2D_{\rm fact} \frac{m_J}{p_T}$.
- 2. Recluster. Discard softer constituent if $R_{ab}>R_{\rm pr}$ and $\frac{\min(p_{Ta},p_{Tb})}{p_{Tab}}< z_{\rm cut}$ at each step.

[Ellis, Vermilion, Walsh 0912.0033]

Per 1307.0007, for up to two IR emissions, phase space of pruning and trimming with variable $R_{\rm sub} = R_{\rm pr}$ identical.

Suggests:

$$p_i^{\mu} \Rightarrow w_i p_i^{\mu} = \Theta\left(rac{p_{Ti,R_{ ext{pr},i}}}{p_{Ti,R}} - z_{ ext{cut}}
ight)\Theta(p_{Ti,R} - p_{T ext{cut}})p_i^{\mu},$$

with
$$R_{\mathrm{pr},i} = 2D_{\mathrm{fact}} \frac{m_{i,R}}{p_{T_{i,R}}}$$
.

From shape trimming to shape pruning

Pruning:

- 1. Compute $R_{\rm pr} = 2D_{\rm fact} \frac{m_J}{p_T}$.
- 2. Recluster. Discard softer constituent if $R_{ab}>R_{\rm pr}$ and $\frac{\min(p_{Ta},p_{Tb})}{p_{Tab}}< z_{\rm cut}$ at each step.

[Ellis, Vermilion, Walsh 0912.0033]

Per 1307.0007, for up to two IR emissions, phase space of pruning and trimming with variable $R_{\rm sub} = R_{\rm pr}$ identical.

Suggests:

$$p_i^{\mu} \Rightarrow w_i p_i^{\mu} = \Theta\left(rac{p_{Ti,R_{\mathrm{pr},i}}}{p_{Ti,R}} - z_{\mathrm{cut}}
ight)\Theta(p_{Ti,R} - p_{T\mathrm{cut}})p_i^{\mu},$$

with
$$R_{\mathrm{pr},i} = 2D_{\mathrm{fact}} \frac{m_{i,R}}{p_{T_{i,R}}}$$
.

Event shapes confront trees Pruning

Compare ungroomed, tree pruned, and event shape pruned QCD and $t\bar{t}$ events...

BOOST2010 sample events, p_T 500-600 GeV

Event shapes confront trees *Pruning*

Compare ungroomed, tree pruned, and event shape pruned QCD and $t\bar{t}$ events...

300ST2010 sample events, p_T 500-600 GeV

Hard to see structure of IR singularities on linear plot \dots

Event shapes confront trees Pruning

Compare ungroomed, tree pruned, and event shape pruned QCD and $t\bar{t}$ events...

BOOST2010 sample events, p_T 500-600 GeV

Hard to see structure of IR singularities on linear plot \dots

Outline

Event shapes for modified clustering algorithms?

- Event Shape Pruning and modified clustering
- Event Shape Trimming Redux and pileup sensitivity
- Event Shape Mass/Soft Drop and soft-collinear logs

Shape trimming meets pileup

Jet-by-jet, event and tree trimming are similarly effectivve. Event-wide shape trimming shows a noticable drop in performance. Why?

[Bertolini, Chan, Thaler, 1310.7584

Shape trimming meets pileup

Jet-by-jet, event and tree trimming are similarly effectivve. Event-wide shape trimming shows a noticable drop in performance. Why?

Issue traced to soft cut degradation at edges of jets. Would like constituent to "know" when it is near a jet core. How?

[Bertolini, Chan, Thaler, 1310,7584

Crowned variables

Local "jet finding" without recursion

An IRC-safe way to find properties of putative local jets

$$\overset{\scriptscriptstyle{\Lambda}}{\mathcal{O}}_{i,R} = \sum_{R_{ij} < R} \frac{p_{T_j}}{p_{T_{i,R}}} \mathcal{O}_{(i)j} = \sum_{R_{ij} < R} w_i \mathcal{O}_{(i)j}$$

Crowned variables

Local "jet finding" without recursion

An IRC-safe way to find properties of putative local jets

$$\overset{\scriptscriptstyle{ ext{\tiny M}}}{\mathcal{O}}_{i,R} = \sum_{R_{ii} < R} rac{p_{T_j}}{p_{T_{i,R}}} \mathcal{O}_{(i)j} = \sum_{R_{ii} < R} w_i \mathcal{O}_{(i)j}$$

More concrete examples

$$egin{aligned} & \stackrel{ ext{ iny M}}{p_{Ti,R}} = \sum_{R_{ij} < R} rac{p_{Tj}}{p_{Ti,R}} p_{Tj,R} \ & \stackrel{ ext{ iny M}}{R_{ ext{rp},i}} = \sum_{R_{ii} < R} rac{p_{Tj}}{p_{Ti,R}} 2 D_{ ext{fact}} rac{m_{j,R}}{p_{Tj,R}} \end{aligned}$$

PU resistant event shapes

Crowned event trimming

$$egin{aligned} oldsymbol{p}_i^{\mu} &\Rightarrow w_i oldsymbol{p}_i^{\mu} = \Theta\left(rac{oldsymbol{p_{Ti,R_{ ext{sub}}}}}{oldsymbol{p_{Ti,R}}} - oldsymbol{f_{ ext{cut}}}
ight) \Theta(oldsymbol{p_{Ti,R}}^{ ext{ iny P}} - oldsymbol{p_{Tout}}) oldsymbol{p}_i^{\mu} \end{aligned}$$

PU resistant event shapes

Crowned event pruning

Similar problem – similar solution.

$$p_i^{\mu} \Rightarrow w_i p_i^{\mu} = \Theta\left(rac{p_{oldsymbol{T}_i, ilde{R}_{ exttt{pr}}}}{rac{M}{D_{oldsymbol{T}_i, oldsymbol{R}}} - f_{ ext{cut}}}
ight) \Theta(ilde{p}_{oldsymbol{T}_i, oldsymbol{R}} - p_{oldsymbol{T}_{ ext{cut}}}) p_i^{\mu}$$

Outline

Event shapes for modified clustering algorithms?

- Event Shape Pruning and modified clustering
- Event Shape Trimming Redux and pileup sensitivity
- Event Shape Mass/Soft Drop and soft-collinear logs

Declustering and event shapes

Soft Drop:

- 1. Undo the last stage of clustering, $j \rightarrow j_a j_b$
- 2. Drop softer jet if $\frac{\min(p_{Ta},p_{Tb})}{p_{Tab}} < z_{\rm cut} \left(\frac{R_{ab}}{R_0}\right)^{\beta}$, otherwise stop.
- 3. Iterate until declustering is impossible. Either remove ("tagging mode") or keep ("grooming mode") the last constituent.

[Dasgupta, Fregoso, Marzani, Salam 1307.0007; Larkoski, Marzani, Soyez, Thaler 1307.0007]

Unlike pruning, already need to know clustering history for 3 constituents.

Declustering and event shapes

Soft Drop:

- 1. Undo the last stage of clustering, $j \rightarrow j_a j_b$
- 2. Drop softer jet if $\frac{\min(p_{Ta},p_{Tb})}{p_{Tab}} < z_{\rm cut} \left(\frac{R_{ab}}{R_0}\right)^{\beta}$, otherwise stop.
- 3. Iterate until declustering is impossible. Either remove ("tagging mode") or keep ("grooming mode") the last constituent.

[Dasgupta, Fregoso, Marzani, Salam 1307.0007; Larkoski, Marzani, Soyez, Thaler 1307.0007]

Unlike pruning, already need to know clustering history for 3 constituents.

Need to know about 2 subjet-like configurations? Extend crowning procedure to all pairwise configurations!

Shape Soft Drop

The soft drop weighting function is

$$p_i^\mu \Rightarrow \Theta(t_i)\Theta(p_{T_{i,R}}-p_{T_{ ext{cut}}})p_i^\mu$$

with

$$t_i = \sum_{\substack{R_{ij} < R \ R_{ik} < R \ R_{ij} + R_{ik} < 2R_{ik}}} rac{p_{T_j}}{p_{T_{i,R}}} rac{p_{T_k}}{p_{T_{i,R}}} \left(rac{\min(p_{T_j (\parallel \ , p_{T_k \parallel})})}{p_{T ()}} - z_{ ext{cut}} \left(rac{R_{ab}}{R_0}
ight)^{eta}
ight)$$

Event shapes confront declustered trees Shape mMDT/soft drop

Compare ungroomed, tree pruned, and event shape pruned QCD and $t\bar{t}$ events...

BOOST2010 sample events, p_T 500-600 GeV

Event shapes confront declustered trees Shape mMDT/soft drop

Compare ungroomed, tree pruned, and event shape pruned QCD and $t\bar{t}$ events...

BOOST2010 sample events, p_T 500-600 GeV

Hard to see structure of IR singularities on linear plot \dots

Event shapes confront declustered trees Shape mMDT/soft drop

Hard to see structure of IR singularities on linear plot ...

IR structure of soft drop shape

No Sudakov double logs, same as algorithm: Event shape with no double log sensitivity

IR structure of soft drop shape

No Sudakov double logs, same as algorithm:

Event shape with no double log sensitivity

Not particularly pretty, but proof of principle

Can we write down something simpler?

(Calculable?)

Summary

General story, so far:

Clustering modification? Change local weighting function Declustering modification? Weight all local configurations

- Event Shape Pruning and modified clustering
- Event Shape Trimming Redux and pileup sensitivity
- Event Shape Mass/Soft Drop and soft-collinear logs

Future directions

- Add to jets without jets fast jet-contrib
- Closed for expressions systematically improvable resummation?
- Simpler event shapes with single IR logs?
- Weighted expressions as means of distributions can we learn something about Qjets?

Backup Pruned Trimming

Result for shape pruning implies that subjet reclustering with $R_{\rm sub}=R_{\rm pr}$ should behave almost like pruning.

BOOST2010 sample events, p_T 500-600 GeV