

V + top tagging in CMS

BOOST2014, London

Tobias Lapsien (University of Hamburg) on behalf of the CMS collaboration

Content

- Top Tagging
 - Introduction
 - Performance in Simulation
 - Performance in Data
- V Tagging
 - Discriminating variables
 - Resolved jets
 - Unresolved jets
- Summary

Top tagging algorithms

- CMS top tagger [D. E. Kaplan et al.: Phys. Rev. Lett. 101 (2008) 142001]
- N-subjettiness [J. Thaler and K. Van Tilburg: JHEP 1103 (2011) 015]
- Subjet b-tagging [CMS Collaboration, CMS PAS BTV-13-001]
- Shower deconstruction [D. E. Soper, M. Spannowsky: arXiv:1211.3140v1]
- HEP top tagger [T. Plehn et al., JHEP 1010 (2010) 078]
- MultiR HEP top tagger [Plehn et al.]

Discriminating variables for the CMS top tagger

Jet mass

Discriminating variables for the CMS top tagger

Minimum pairwise mass

Discriminating variables for the CMS top tagger

N subjettiness

Shower deconstruction

• variable χ: probability quotient, a set of microjets in a fatjet were created by the decay of a top quark, divided by the probability that they were created by light quarks and gluons [1]:

$$X(\lbrace p \rbrace_N) = \frac{P(\lbrace p \rbrace_N | S)}{P(\lbrace p \rbrace_N | B)}$$

[1] Davison E. Soper, Michael Spannowsky "Finding top quarks with shower deconstruction" (arXiv:1211.3140v1)

Shower deconstruction

- Microjets: clustering the jet constituents of the fat jet to smaller jets with cone size of R $\{0.1,...,0.3\}$ with the k_{τ} -algorithm
- microjets with p_T > 10GeV
- Different microjet cone sizes are used for different fat jet pt regions (see table)
- Two versions of the shower deconstruction tagger available (C/A 8, C/A 15)

Value
p_T dependent
9
> 10 GeV
$0.8 \; / \; 1.5$
> 200 GeV
80.4 GeV
$\pm 12 \text{ GeV}$
160 GeV
$\pm 25 \text{ GeV}$
2

p_T range [GeV]	microjet cone size
0 - 500	0.3
500 - 700	0.2
700 - ∞	0.1

MultiR HEP top tagger

- Improved version of the HEPTopTagger, taking into account information at multiple cone sizes (see talk of Torben Schell)
- MultiR-Algorithm [Also documented in upcoming note by Plehn et al]:
 - Start with C/A, R=1.5 seed fat-jet

Perform unclustering to identify small fat-jets with R=0.5 to R=1.5 (in steps of 0.1)

and run HEPTopTagger on each of them

 Calculate: R_{min} = Smallest cone size for which the mass differs by less than 20% from the mass at R=1.5

Calculate expected R_{min,expected}: Expected R_{min} for a signal jet as

function of the filtered fat-jet p_T

- Top candidate mass: m(R=R_{min})
- W / top mass ratio: $f_W(R=R_{min})$
- R_{min} difference: R_{min} R_{min, expected}

Definition of efficiency and mistag rate:

$$\epsilon = \frac{\text{tagged matched jets}}{\text{matched jets}}$$

For background jet matched to gluon/quark

For signal jet matched to hadronically decaying top quarks and anti-top quarks

C/A15

HEP Top Tagger

HEP + τ_3/τ_2

HEP + τ_3/τ_2 + sub. b-tag

MultiR HEP Top Tagger

← HEP WP0

HEP Comb. WP1

HEP Comb. WP2

- HEP Top Tagger curve determined by fixing 140 GeV < m₁₂₃ < 250 GeV and varying the width of the W mass selection (f_w)
- MultiR Hep Top Tagger curves are obtained by a parameter scan over three observables (m_{Jet}(R=R_{min}), f_W(R=R_{min}), Δ R
- Subjet b-tag curve determined by also varying the subjet CSV discriminant

 Shower deconstruction curve is obtained by scanning χ

- Over the whole p_T range the Shower deconstruction tagger with an additional b-tag performs best
- For p_T > 800 GeV the MultiR Tagger and the shower deconstruction tagger show a huge improvement

HEP Top Tagger

 \longrightarrow HEP + τ_3/τ_2

- HEP + τ_3/τ_2 + subjet b-tag

Shower deconstruction

= = Shower deconstruction + subjet b-tag

MultiR HEP Top Tagger

- ↔ HEP WP0
- HEP Comb. WP1
- ☐ HEP Comb. WP2
- △ HEP Comb. WP3

CMS Top tagger curve determined by fixing 140 GeV < m_{Jet} < 250 GeV and N_{subjets} > 2, m_{min} is varied

- In whole p_⊤ range the CMS
 Top tagger + N subjettness
 + subjet b-tag is performing the best
- For p_T > 600 GeV also the Shower deconstruction tagger is working good

- CMS Top Tagger
- --- subjet b-tag
- N-subjettiness ratio τ₃/τ₂
- --- CMS Top Tagger + subjet b-tag
- CMS Top Tagger + τ₃/τ₂ + subjet b-tag
- Shower deconstruction
- - Shower deconstruction + subjet b-tag

- + CMS WP0
- CMS Comb. WP1
- CMS Comb. WP2
- ▲ CMS Comb. WP3
- ♦ CMS Comb. WP4

 \bullet For p_T > 800 GeV comparison between algorithms with different cone sizes possible

<u>Muon + jets semileptonic ttbar selection</u>

- Exactly one high p_T muon with p_T > 45 GeV
- Min one jet tagged with the CSV medium b-tagging algorithm
- B-tagged jet, $p_T > 30$ GeV and $\Delta R_{\text{muon,jet}} < \Pi/2$
- The jet with the highest p_T in the hemisphere $\Delta R_{\text{muon,CA jet}} > \Pi/2$ is a top candidate
- Top candidate for CMS Top Tagger is C/A jet with R=0.8 , $p_{\tau} > 400$ GeV and
- Top candidate for HEP Top Tagger
- is C/A jet with R=1.5 , p_⊤ > 200 GeV and

CMS Top Tagger observables:

- M_{min} not well modelled by simulation
- Effect maybe because of mis-modeling of radiation or merged subjets
- M_{min} better described in the for the central region $|\eta| < 1.0$
- → pseudorapidity-dependent scale factor
- Other variables well described

CMS Top Tagger observables:

- M_{min} not well modelled by simulation
- Effect maybe because of mis-modeling of radiation or merged subjets
- M_{min} better described in the for the central region $|\eta| < 1.0$
- → pseudorapidity-dependent scale factor
- Other variables well described

CMS Top Tagger observables:

- M_{min} not well modelled by simulation
- Effect maybe because of mis-modeling of radiation or merged subjets
- M_{min} better described in the for the central region $|\eta| < 1.0$
- → pseudorapidity-dependent scale factor
- Other variables well described

Observables

Jet grooming techniques	Parameters
Filtering [1]	3 hardest CA subjets with R=0.2
Trimming [2]	R_{sub} =0.05, p_T fraction of mother jet > 3%
Pruning [3]	momentum fraction 0.1, maximal distance 0.5
Soft-Drop [4]	soft threshold fixed to 0.1, beta={-1,0,2}

Variable	Parameter
Gluon/Quark Likelihood [5]	
Subjet Gluon/Quark Likelihood [5]	
Energy Correlation Functions [6]	$\beta = \{0,0.2,0.5,1,2\}$
N-subjettiness	τ_2/τ_1
Qjet volatility [7]	NTrees=50

- [1] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam: Phys.Rev.Lett. 100 (2008) 242001
- [2] D. Krohn, J. Thaler, and L.-T. Wang: JHEP 1002 (2010) 084
- [3] S. D. Ellis, C. K. Vermilion, and J. R. Walsh: Phys. Rev. D 80 (2009) 051501
- [4] A. Larkoski, S. Marzani, G. Soyez, and J. Thaler: JHEP05(2014)146
- [5] CMS Collaboration: CMS-PAS-JME-13-002
- [6] A. Larkoski, G. Salam, and J. Thaler: JHEP06(2013)108
- [7] S. D. Ellis et al.: PhysRevLett.108.182003

Observables

Jet Pull Angle [J. Gallicchio, M. Schwartz: arXiv:1001.5027v3]:

- Compute weighted vector sum of constituent positions relative to the jet axis in y-φ space
- The angle between the pull vector and the relative displacement of another jet is the pull angle, θ_{p}
- θ_p should peak around zero for color connected jet
- pairs are uniformly distributed for unconnected jet pairs

<u>Jet Pull Magnitude:</u> the magnitude of the jet pull vector for pruned subjets

$$\vec{t} = \sum_{i \in \text{jet}} \frac{p_T^i \, |r_i|}{p_T^{\text{jet}}} \, \vec{r_i}$$

$$\vec{r}_i = (\Delta y_i, \Delta \phi_i)$$

Resolved W/Z selection

Resolved scenario: electroweak boson p_{τ} < 160 GeV

Ttbar selection (signal):

- Min four Anti- k_T jets (R=0.5) with p_T > 30GeV, $|\eta|$ < 4.7
- Exactly one muon p_T > 30GeV
- Min two b-tagged jets

Pairs of dijets (not b-tagged) with a dijet mass between 40GeV and 130GeV

Jet pull angle

- Good data/MC agreement for pull angle computed using leading and subleading jet of the W candidates
- Weak separation power at low dijet p₊

- At high dijet p_⊤, the pull angle shows opposing behavior between leading and sub-leading jets
- → Consequence of jets overlapping...

Pull Angle: Overlapping Jets

 The asymmetric behavior with reco jets is the effect of partially merged jets from the W and jet clustering of the reconstruction

- Leading jet "gobbles up" some hadrons from the other quark
- Consequences:
 - Sub-leading jet pull points away from leading jet, having lost constituents that are "closer" to the leading jet
 - θ_{P} peak can be enhanced as leading jet absorbs hadrons of other jet

Resolved Jets performance

- QGL, jet pull angle, dijet charge sum used for BDT
- Variables each provide some separation power
- Variables are weakly correlated
- Training was done for two different dijet p_T bins

Unresolved W/Z selection

Unresolved scenario: electroweak boson p_⊤ > 250 GeV

Ttbar selection (**signal**):

- Anti- k_T jets (R=0.8) with p_T > 250GeV, $|\eta|$ < 2.5, $\Delta R(jet, lepton)$ > 0.3
- Exactly one muon p_T > 30GeV
- Min two b-tagged jets (no match with boosted jet)

Z+Jets selection (background):

- Anti- k_T jets (R=0.8) with p_T > 250GeV, $|\eta|$ < 2.5, $\Delta R(jet, lepton)$ > 0.3
- Two opposite sign muons with p_T > 30GeV
- Dimoun mass within 15 GeV of the nominal Z boson mass
- Dilepton p_T>100GeV
- → relatively pure sample of quark jets

Data/MC comparison: soft drop

 $z_{cut} = 0.1, R_0 = 0.8$

Good data/MC agreement

Data/MC comparison: QGL

- "Fat" jet appears very gluon-like to QGL
- Subjet QGL recovers expected behavior
- Trailing subjet QGL shows more discriminating power than leading subjet QGL
- QGL combo: defined as a linear combination of the leading subjet QGL with twice the second leading subjet QGL

Correlations

Correlation matrices for BDT single variables for background MC and data (Z+jets selection)

Z+Jets selection simulation

CMS Simulation Preliminary Background 8 TeV all 77794231624514 577587858486878586661738294749.00 5146414150193148484341403942404031174629930049 Subjet 2 QGL 5147414049193248494341403942404029164531009347 Subjet 1 QGL QGL 3045637664261233353436373235333228 9 0062454638 M_{rim} M_{Filt} $\begin{array}{c} M_{SD} \beta = -1 \\ M_{SD} \beta = -1 \end{array}$

Z+Jets selection data

Correlations

- •Easier to view correlation matrix in "blocks"
 - Typically stronger correlations within blocks
- Correlations between data and MC look similar

Z+Jets selection simulation

CMS Simulation Preliminary Background 8 TeV QGL Combo Subjet 2 QGL Subjet 1 QGL QGI Groomed iet mass N-prong tagging

Z+Jets selection data

Correlations

 Correlation between All-Variables-BDT and each individual variable quantities the variable's impact

Z+Jets selection simulation

CMS Simulation Preliminary Background 8 TeV QGL Combö Sübjet 2 QGL Subjet 1 QGL

Z+Jets selection data

Performance

- Multi-dimensional analysis based on Boosted Decision Trees (BDT), using the TMVA framework
- Working point is set to 50% signal efficiency
- Iteratively added one variable on top of the next variable
- Saturation after use of 11 variables

Summary

Top Tagging

- Different top tagger were compared in Simulation
- N subjettiness has a good separation power and can improve existing top tagger
- The MultiR HEP Top tagger is a powerful improvement and makes the HEP Top Tagger usable in higher p_⊤ regions
- Shower deconstruction is a completely other approach for top tagging and has a great performance
- Validation in data is on going

V tagging

- New variables like QGL, pull angle, and pull magnitude are used
- Variables are good described (ttbar selection, Z+Jets selection)
- Variables have a high discriminating power
- New variables have low correlations to any other variables

Samples

The following samples were used:

TTbar:

MADGRAPH + PYTHIA 6 POWHEG v1 + PYTHIA 6 MC@NLO + HERWIG

QCD:

PYTHIA 6 MADGRAPh + PYTHIA 6

DiBoson: PYTHIA 6

CMS detector simulation: GEANT 4

Data/MC scale factors

Cumulative data-simulation scale factor - CMS Tagger, CMS Combined Tagger

	$ \eta < 1.0$		
Selection	MADGRAPH	POWHEG	MC@NLO
CMS Tagger WP0	0.985 ± 0.073	1.173 ± 0.092	1.033 ± 0.081
CMS Combined Tagger WP3	0.891 ± 0.118	1.063 ± 0.146	0.933 ± 0.129

Scale factors

$1.0 < \eta < 2.4$					
Selection	MADGRAPH	POWHEG	MC@NLO		
CMS Tagger WP0	0.644 ± 0.100	0.704 ± 0.110	0.768 ± 0.118		
CMS Combined Tagger WP3	0.685 ± 0.199	0.906 ± 0.277	0.802 ± 0.230		

 \rightarrow scale factors are worse for the high η region

Working points

Working	m_{123}	f_{W}	subjet	$ au_3/ au_2$
point	selection	selection	b-tag WP	selection
HEP WP0	$140-250 (\mathrm{GeV}/c^2)$	0.495	none	none
HEP Combined WP1	140-250 (GeV/ c^2)	0.495	CSV-loose	none
HEP Combined WP2	140-250 (GeV/ c^2)	0.15	CSV-medium	none
HEP Combined WP3	$140-250 \text{ (GeV/}c^2\text{)}$	0.15	CSV-medium	< 0.63

Working	$m_{ m jet}$	$m_{ m min}$	subjet	$ au_3/ au_2$
point	selection	selection	b-tag WP	selection
CMS Tagger WP0	140-250 (GeV/ c^2)	$> 50 \text{ (GeV/}c^2)$	none	none
CMS Combined WP1	$140-250 \text{ (GeV/}c^2\text{)}$	$> 50 (\text{GeV}/c^2)$	CSV-loose	< 0.7
CMS Combined WP2	$140-250 \text{ (GeV/}c^2\text{)}$	$> 50 (\text{GeV}/c^2)$	CSV-loose	< 0.6
CMS Combined WP3	$140-250 \text{ (GeV/}c^2\text{)}$	$> 50 (\text{GeV}/c^2)$	CSV-medium	< 0.55
CMS Combined WP4	140-250 (GeV/ c^2)	$> 65 \text{ (GeV/}c^2)$	CSV-medium	< 0.4

List of observables

Jet grooming techiques:

Filtering: three hardest CA subjets with R=0.2

<u>Trimming:</u> trimming reclusters the jets' constituents with a radius R_{Sub} and then accepts only the subjets that have $p_{T,Sub} > f_{Cut}$, subjets obtained with k_T clustering, $R_{Sub} = 0.05$, p_T fraction of mother jet > 3%

<u>Pruning:</u> technique to remove softest components of the jet, minimal momentum fraction 0.1, maximal distance 0.5

Soft-Drop: declustering fatjet, soft threshold fixed to 0.1, beta={-1,0,2}

$$\frac{min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

List of observables

Gluon/Quark Likelihood: capable of distinguishing between jets created by gluons/Quarks

Subjet Gluon/Quark Likelihood: applied on the two leading pruned subjets

Energy Correlation Functions: 3 point correlation function is defined as:

$$C_2^{\beta} = \frac{\sum_{i,j,k} p_{Ti} p_{Tj} p_{Tk} (R_{ij} R_{ik} R_{jk})^{\beta} \sum_{i} p_{Ti}}{(\sum_{i,j} p_{Ti} p_{Tj} (R_{ij})^{\beta})^2} \qquad \beta = \{0,0.2,0.5,1,2\}$$

N-subjettiness: τ_2/τ_1

Qjet volatility: Defined as the RMS of the mass distribution of jet trees over the average jet mass, volatility = RMS/ m . Where Ntrees is chosen to be 50.

Jet Charge: Jet charge algorithm for boosted W-tagging

$$Q^{\kappa} = \frac{\sum_{i} \left(q_{i} \left(p_{T}^{i} \right)^{\kappa} \right)}{\left(p_{T}^{jet} \right)^{\kappa}}$$

Correlations


```
19.7 fb<sup>-1</sup>(8TeV)
                           CMS (Preliminary) Signal
Subjet 2 QGL
Subjet 1 QGL
```

- Mass variables are strongly correlated, trimmed mass the least correlated
- sub-leading subjet QGL,
 pull angle, and pull magnitude
 are not correlated
- Correlation with column "all" indicates the most discriminating variables

Data/MC comparison

Jet source determined by calculating ΔR , to the closest generator level patron, $\Delta R < 0.7$

Performance

ROC curves for all single variables

Correlations

Correlation matrices for signal (ttbar selection) and background (Z+jets selection)

ttbar selection simulation

CMS Preliminary Signal 19.7 fb⁻¹ (8 TeV)

Z+Jets selection data

Z score for variable pairs

- BDT trained with pair of variables
- Shown is the Z score, which is defined as $1/\epsilon_{mis}$
- Efficiency working point Is set to 50%
- Signal: MC
- Background: MC

Z score for variable pairs

- BDT trained with pair of variables
- Shown is the Z score, which is defined as $1/\epsilon_{mis}$
- Efficiency working point Is set to 50%
- Signal: MC
- Background: Data

Z score for variable triplets

- BDT trained with triplets of variables
- Shown is the Z score, which is defined as $1/\epsilon_{mis}$
- Efficiency working point Is set to 50%

