CP results from BaBar

David Hutchcroft University of Liverpool Lancaster '08

- BaBar is a 4π detector on the PEP-II ring
- PEP-II collides e^+ and e^- at the Y(4s) resonance
- Produces $B^0 \overline{B}^0$ and $B^+ B^$ with a boost of $\beta \gamma = 0.56$, [ct $\beta \gamma = 250 \mu$ m]

BaBar Detector layout

Muon chambers and Magnet return yoke

Magnet

Electromagnetic Calorimeter

Drift chamber

Five layer silicon vertex detector

Particle ID: quartz bars leading to a Water Cherenkov box

Data used in analyses

- Dataset is 467 ± 5 million BB events
- Backgrounds are predominantly non resonant annihilation so reconstruct B mesons

- Variables $m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ $\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$

 m_{ES} is mass of the B system using the initial beam energy constraint, p_{B}^{*} is the CM frame B momentum and E_{B}^{*} is the CM energy of the B meson

CP violation

- Direct CP violation : $Br(B^0 \rightarrow f) \neq Br(\overline{B^0} \rightarrow \overline{f})$
 - Time integrated effect, event counting
- Indirect CP violation from mixing and decay interference
 - Time dependant effect
 - Relevant for CKM angle measurements
- Use coherence between B⁰ and B⁰ to decide what meson actually decayed

5

CKM angles

- CKM matrix is a unitary matrix that connects the mass eigenstates and weak eigenstates
- Elements appear in weak current interactions

|V_{ub}| e^{-η}

V_{us} V_{cs} V_{ts}

0

 $\rho(1-\lambda^2/2)$

 $\eta(1-\lambda^2/2)$

V_{td} e^{-iβ}

A unitarity

triangle :

CP violation

Re

+ $O(\lambda_c^4) [\lambda_c = \sin\theta_c]$

Wolfenstein parameterisation

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

Interference measurements

$$f(B^0 \to f, \Delta t) = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} [1 + \eta S \sin(\Delta m_d \Delta t) - \eta C \cos(\Delta m_d \Delta t)]$$

$$\eta = +1(-1) \text{ for } B^0(\overline{B}^0)$$

q/p

 $A_{CP}(t) = \frac{\Gamma(\bar{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\bar{B}^0(t) \to f) + \Gamma(B^0(t) \to f)}$ $= S_f \sin \Delta mt - C_f \cos \Delta mt$

 $S_f = \frac{2 \mathrm{Im}\lambda}{1+|\lambda|^2} \quad C_f = \frac{1-|\lambda|^2}{1+|\lambda|^2}$

 $\lambda \equiv \frac{q}{p} \frac{A_f}{A_f}$

Current status

Both CKM-Fitter and UT-Fit groups have combined the results and have consistent values for the CKM angles

BaBar results for β

Still dominated by sin2 β from golden modes $B \rightarrow c \overline{c} K^{(*)0}$

all of the available cc modes are used in the measurement The decay to K_s and K_L have the opposite CP signs

BABAR-CONF-08/017, SLAC-PUB-13324 arXiv:0808.1903v1

Clear and consistent time dependant oscillation in all ccK modes

400

Decays depending on α

- Tree decays of B⁰ and B⁰ to two charmless mesons depend on $\pi - (\beta + \gamma) = \alpha$
- Trees only $C_f = 0$ $S_f = \sin(2\alpha)$

Trees + Penguins $C_f \propto \sin(\delta)$

 $S_f = \sqrt{1 - C_f^2} \sin(2\alpha_{\text{eff}})$

 $\delta = \delta_P - \delta_T \quad \text{strong phase}$

Separating trees and penguins Use an isospin relation between similar decays to measure the amount of each type of decay Used to set a limit on $\Delta \alpha = \alpha - \alpha_{eff}$

Need to measure all of the related decays of $\pi\pi$

Penguin contribution depends on $Br(\pi^0\pi^0)$

Charged B decay is tree only

Gronau-London: PRL65, 3381 (1990) etc

$B \rightarrow \pi^0 \pi^0$

SPlots of $m_{\rm ES}$ and $\Delta {\rm E}$

The branching ratio is measured as Br = $(1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$

The direct CP asymmetry is $C_f = -0.43 \pm 0.26 \pm 0.05$

[stat. then syst. errors]

BABAR-CONF-08/014, SLAC-PUB-13326 arXiv:0807.4226 $B \rightarrow \pi^{+}\pi^{-} \text{ (top) and}$ $B \rightarrow K^{+}\pi^{-} \text{ (bottom)}$

Reconstruct all $B \rightarrow h^+h'^$ decays together with tracks assumed to be pions

In total 1395±54 $\pi^+\pi^$ and 5410±91 K⁺ $\pi^$ events were fit

The direct CP asymmetry in the K π system is visible in the ΔE plot

Blue B⁰ Red B⁰

 $A_{K\pi} = -0.107 \pm 0.016^{+0.006}_{-0.004}$

α Scan

Eight fold ambiguity due to the value and sign of $|\alpha - \alpha_{eff}|$ and orientation of the iso-spin triangle

Only the region between [23⁰,67⁰] is excluded at 90% confidence

BaBar results for γ

Measure sin(2 β + γ) with the decays $B^0 \rightarrow D^{\mp} K_s^0 \pi^{\pm}$

using the reconstructed the time dependant Dalitz plot

Remove K π [3.4,3.95] to remove D⁺D⁻(s) decays

BABAR-PUB-07/065 SLAC-PUB-13050 arXiv:0712.3469v1 Blue is background PDF Rose is signal PDF Points are data Line is full fit PDF 347 x 10⁶ BB events

Purple is signal PDF Others are backgrounds Solution is a function of $r = \frac{A(b \rightarrow u)}{A(b \rightarrow c)}$

Assuming r = 0.3 there are two solutions $2\beta+\gamma=(83\pm53\pm20)^0$ and $(263\pm53\pm20)^0$

Timeline for BaBar first CKM angle measurements

"Measurement of the CP-violating Asymmetry Amplitude sin 2β " Phys. Rev. Lett. **89:201802,2002**

Referenced in the 2008 Nobel prize award to K&M, with the equivalent Belle paper, cited 396 times so far

"Study of the decay B⁰(anti-B⁰) $\rightarrow \rho^+\rho^-$, and constraints on the CKM angle α ", Phys.Rev.Lett. **93:231801,2004** Cited 73 times so far

"Measurement of branching fractions and CP-violating charge asymmetries for B meson decays to $D^{(*)}$ anti- $D^{(*)}$, and implications for the CKM angle γ ", Phys.Rev. **D73:112004,2006**. **Cited 17 times so far**

Conclusion

- BaBar has measured each of the angles α , β and γ
- Also both of the unconstrained sides
- So far the results are all consistent with the Standard Model
- In 2007 BaBar published 74 papers, with 43 so far in 2008
- The final measurements from the BaBar dataset will continue to improve the measurements of the CKM matrix for a few years yet