CP results from BaBar

David Hutchcroft
University of Liverpool
Lancaster '08

- BaBar is a 4π detector on the PEP-ll ring
- PEP-Il collides e^{+}and e^{-}at the $\mathrm{Y}(4 \mathrm{~s})$ resonance
- Produces $B^{0} \bar{B}^{0}$ and $B^{+} B^{-}$
with a boost of $\beta \gamma=0.56,[\operatorname{ct} \beta \gamma=250 \mu \mathrm{~m}]$

BaBar Detector layout

Particle ID: quartz bars leading to a Water
Cherenkov box

Data used in analyses

- Dataset is 467 ± 5 million BB events
- Backgrounds are predominantly non resonant annihilation so reconstruct B mesons
- Variables

$$
\begin{aligned}
& m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}} \\
& \Delta E=E_{B}^{*}-\frac{1}{2} \sqrt{s}
\end{aligned}
$$

$m_{\text {ES }}$ is mass of the B system using the initial beam energy constraint, p_{B}^{*} is the CM frame B momentum and $E_{B}{ }^{*}$ is the $C M$ energy of the B meson

CP violation

- Direct $C P$ violation : $\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{f}\right) \neq \operatorname{Br}\left(\bar{B}^{0} \rightarrow \bar{f}\right)$
- Time integrated effect, event counting
- Indirect CP violation from mixing and decay interference
- Time dependant effect
- Relevant for CKM angle measurements
- Use coherence between B^{0} and $\overline{\mathrm{B}^{0}}$ to decide what meson actually decayed
- Tag other side B decay
- Also measure Δt between decays

CKM angles

- CKM matrix is a unitary matrix that connects the mass eigenstates and weak eigenstates
- Elements appear in weak current interactions

Interference measurements

$$
\begin{aligned}
& f\left(B^{0} \rightarrow f, \Delta t\right)=\frac{\Gamma}{4} e^{-\Gamma \Delta t}\left[1+\eta S \sin \left(\Delta m_{d} \Delta t\right)-\eta C \cos \left(\Delta m_{d} \Delta t\right)\right] \\
& \eta=+1(-1) \text { for } B^{0}\left(\bar{B}^{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
A_{C P}(t) & =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)-\Gamma\left(B^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f\right)+\Gamma\left(B^{0}(t) \rightarrow f\right)} \\
& =S_{f} \sin \Delta m t-C_{f} \cos \Delta m t
\end{aligned}
$$

$$
\begin{gathered}
S_{f}=\frac{2 \operatorname{Im} \lambda}{1+|\lambda|^{2}} \quad C_{f}=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}} \\
\lambda \equiv \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
\end{gathered}
$$

Current status

Both CKM-Fitter and UT-Fit groups have combined the results and have consistent values for the CKM angles

BaBar results for β

Still dominated by $\sin 2 \beta$ from golden modes

$$
B \rightarrow c \bar{c} K^{(*) 0}
$$

all of the available cc modes are used in the measurement The decay to K_{s} and K_{L} have the opposite CP signs

BABAR-CONF-08/017, SLAC-PUB-I3324 arXiv:0808.1903v

Clear and consistent time dependant oscillation in all ccK modes

Decays depending on α

- Tree decays of B^{0} and $\overline{\mathrm{B}}^{0}$ to two charmless mesons depend on $\pi-(\beta+\gamma)=\alpha$
- Trees only

$$
C_{f}=0
$$

$S_{f}=\sin (2 \alpha)$

Trees + Penguins
$C_{f} \propto \sin (\delta)$
$S_{f}=\sqrt{1-C_{f}^{2}} \sin \left(2 \alpha_{\text {eff }}\right)$
$\delta=\delta_{P}-\delta_{T}$ strong phase

Separating trees and penguins

 Use an isospin relation between similar decays to measure the amount of each type of decayUsed to set a limit on $\Delta \alpha=\alpha-\alpha_{\text {eff }}$
Need to measure all of the related decays of $\pi \pi$

Penguin contribution depends on $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)$

Charged B decay is tree only

$$
\Delta \alpha=\left|\alpha_{\mathrm{eff}}-\alpha\right|
$$

$\mathrm{B} \rightarrow \pi^{0} \pi^{0}$

SPlots of $m_{E S}$ and $\Delta \mathrm{E}$
The branching ratio is measured as $\mathrm{Br}=(\mathrm{I} .83 \pm 0.2 \mathrm{I} \pm 0.13) \times 10^{-6}$

The direct CP asymmetry is $C_{f}=-0.43 \pm 0.26 \pm 0.05$

BABAR-CONF-08/014, SLAC-PUB-I 3326
[stat. then syst. errors] arXiv:0807.4226
$\mathrm{B} \rightarrow \pi^{+} \pi^{-}$(top) and
$\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$(bottom)
Reconstruct all $B \rightarrow h^{+} h^{-}$ decays together with tracks assumed to be pions

In total $\quad 1395 \pm 54 \pi^{+} \pi^{-}$ and $\quad 5410 \pm 91 \mathrm{~K}^{+} \pi^{-}$ events were fit

The direct CP asymmetry in the $K \pi$ system is visible in the $\Delta \mathrm{E}$ plot

Blue $\mathrm{B}^{0} \operatorname{Red} \overline{\mathrm{~B}}^{0}$

$$
A_{K \pi}=-0.107 \pm 0.016_{-0.004}^{+0.006}
$$

$\mathrm{B} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{aligned}
& S_{f}=-0.68 \pm 0.10 \pm 0.03 \\
& C_{f}=-0.25 \pm 0.08 \pm 0.02
\end{aligned}
$$

α Scan

Eight fold ambiguity due to the value and sign of $\left|\alpha-\alpha_{\text {eff }}\right|$ and orientation of the iso-spin triangle

Only the region between [$23^{0}, 67^{\circ}$] is excluded at 90\% confidence

BaBar results for γ

Measure $\sin (2 \beta+\gamma)$ with the decays $B^{0} \rightarrow D^{\mp} K_{s}^{0} \pi^{ \pm}$
using the reconstructed the time dependant Dalitz plot

Remove $\mathrm{K} \pi$ [3.4,3.95] to remove $\mathrm{D}^{+} \mathrm{D}^{-}(\mathrm{s})$ decays

Blue is background PDF
Rose is signal PDF
Points are data
Line is full fit PDF
BABAR-PUB-07/065
SLAC-PUB-I3050 arXiv:07|2.3469v|

Results

Purple is signal PDF Others are backgrounds

Solution is a function of $r=\frac{A(b \rightarrow u)}{A(b \rightarrow c)}$
Assuming $r=0.3$ there are two solutions $2 \beta+\gamma=(83 \pm 53 \pm 20)^{0}$ and $(263 \pm 53 \pm 20)^{0}$

Timeline for BaBar first CKM angle measurements

"Measurement of the CP-violating Asymmetry Amplitude $\sin 2 \beta$ " Phys. Rev. Lett. 89:201802,2002
Referenced in the 2008 Nobel prize award to K\&M, with the equivalent Belle paper, cited 396 times so far
"Study of the decay $\mathrm{B}^{0}\left(\right.$ anti- $\left.\mathrm{B}^{0}\right) \rightarrow \rho^{+} \rho^{-}$, and constraints on the CKM angle α ", Phys.Rev.Lett. 93:23 I 80I,2004

Cited 73 times so far
"Measurement of branching fractions and CP-violating charge asymmetries for B meson decays to D^{*} anti- $D^{(*)}$, and implications for the CKM angle γ ", Phys.Rev. D73: I I 2004,2006.
Cited I7 times so far

Conclusion

- BaBar has measured each of the angles α, β and γ
- Also both of the unconstrained sides
- So far the results are all consistent with the Standard Model
- In 2007 BaBar published 74 papers, with 43 so far in 2008
- The final measurements from the BaBar dataset will continue to improve the measurements of the CKM matrix for a few years yet

