$B o K^* \mu \mu$ in the SM and Beyond Patricia Ball in collaboration with W. Altmannshofer, A. Buras, D. Straub, M. Wick (TU München) and A. Bharucha (IPPP Durham) based on arXiv:0811.1214 Lancaster, Nov 12 2008 ## Anything wrong with $b \rightarrow s$? - time-dependent CP asymmetry in $b \to s$: $S_{\Phi K} \neq S_{J/\psi K}$ - lacktriangle hints at large B_s mixing phase from Tevatron If there are BSM sources for the above, they will be found at the LHC: - $lue{}$ B_s mixing phase - $B_s \to \mu^+ \mu^-$ ## $B o K^*\mu\mu$ – Diagrams Patricia Ball ∇ – p.2 ## $B o K^* \mu \mu$ – Diagrams - $b \rightarrow s\ell^+\ell^-$ is FCNC (flavour-changing neutral current) forbidden at tree-level in the SM - in the SM induced by one-loop penguin and one-loop box diagrams - new physics also at one loop (e.g. MSSM) or possibly tree-level (e.g. FC neutral Higgs) [heavily suppressed] - related decay $b \rightarrow s\gamma$ extensively studied at B factories - also FCNC, but with less sensitivity to BSM than $b \to s \ell^+ \ell^-$ (less operators in effective Hamiltonian, less observables) - difficult at the LHC because of γ ; $\mu^+\mu^-$ has better detection efficiency ## $B o K^* \mu \mu$ – Data Current status (ICHEP 08) at B factories and Tevatron: | Experiment | BaBar | Belle | CDF | |--|------------------------|------------------------------|-----------------------| | $\mathcal{B}(B \to K^* \mu^+ \mu^-) \times 10^7$ | $11.1 \pm 1.9 \pm 0.7$ | $10.8^{+1.0}_{-1.0} \pm 0.9$ | $8.1 \pm 3.0 \pm 1.0$ | | # of events | ? (ca. 1/2 of Belle) | 230(!) | ? | Patricia Ball ∇ – p.3 ## $B o K^* \mu \mu$ – Data Current (Belle) measurement of dilepton mass spectrum (230 events): ## $B o K^* \mu \mu$ – Data Current (Belle) measurement of dilepton mass spectrum (230 events): dBF/dq²/BF (1/ GeV²/c²) 0.06 0.04 0.02 10 $q^2(GeV^2/c^2)$ 12.5 15 17.5 20 22.5 25 Projection: LHCb with 7200 events $(2 \text{ fb}^{-1}, \text{ i.e. 1y of running})$ #### The usual suspects: - branching ratio - dilepton mass spectrum - forward-backward asymmetry Anything else? #### The usual suspects: - branching ratio - dilepton mass spectrum - forward-backward asymmetry Anything else? More than you think! The big questions: #### The big questions: - how to calculate $B \to K^* \mu^+ \mu^-$ decays - how to define observables - how to find new physics #### The big questions: - how to calculate $B \to K^* \mu^+ \mu^-$ decays \to this talk - how to define observables → this talk - how to find new physics → next talk (A. Bharucha) ## How to calculate ## The B Physicist's Toolbox #### For exclusive decays: - effective field theories - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$) - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$) ## The B Physicist's Toolbox #### For exclusive decays: - effective field theories - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$) - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$) - hadronic matrix elements (→ form factors): nonperturbative methods (lattice, QCD sum rules on the light-cone) Patricia Ball ∇ – p.8 ## The B Physicist's Toolbox #### For exclusive decays: - effective field theories - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$) - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$) - hadronic matrix elements (→ form factors): nonperturbative methods (lattice, QCD sum rules on the light-cone) - hard spectator effects etc.: QCD factorization #### The Effective Hamiltonian Possible (MSSM): Patricia Ball BSM diagrams - calculate diagrams in full theory (SM or BSM) - match to effective Hamiltonian $$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \times \text{CKM} \times \sum_{i} \frac{C_i(\mu)\mathcal{O}_i(\mu)}{}$$ with Wilson coefficients C_i and (e.g. 4-quark) operators \mathcal{O}_i • μ is renormalisation scale. Matching done at $\mu \approx m_W$. For B physics, need to know C_i at $\mu \approx m_b$: solve RG equations $$\mu \frac{d}{d\mu} \vec{C}(\mu) = \gamma^T \vec{C}(\mu)$$ - anomalous dimensions γ known to 3-loop accuracy (Gorbahn/Haisch/Misiak 04+05) - initial conditions $C_i(m_W)$ known to 2-loop accuracy (Bobeth/Misiak/Urban 99) $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V. $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V. $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$. $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V. $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$. All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08) Patricia Ball ∇ – p.10 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V. $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$. All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08) Want to know more? $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V. $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$. All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08) Want to know more? ## **QCD** Factorisation (Beneke/Feldmann/Seidel 01+04) \otimes = emission of photon Include matrix elements of operators which are not related to form factors. - $lue{}$ mostly $O(\alpha_s)$ corrections - plus weak annihilation: diagrams with quarks in B meson annihilating ## How we differ from our competitors Recent analyses: Bobeth/Hiller/Piranishvili 08, Egede et al. 08 #### We use: - full set of 7 form factors with correlated errors (instead of 2 form factors in heavy quark limit) - full analysis of all observables - large set of BSM models ## How to define observables #### **Kinematics** K^* decays to $K\pi$ (\approx 100 %). Angular distribution of $K\pi$ indicative for polarisation of K^* . Full angular spectrum: $$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*}, d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$ #### **Kinematics** $$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*}, d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$ $$I(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi) = I_{1}^{s} \sin^{2}\theta_{K^{*}} + I_{1}^{c} \cos^{2}\theta_{K^{*}} + (I_{2}^{s} \sin^{2}\theta_{K^{*}} + I_{2}^{c} \cos^{2}\theta_{K^{*}}) \cos 2\theta_{l}$$ $$+I_{3} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{l} \cos 2\phi + I_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \cos \phi$$ $$+I_{5} \sin 2\theta_{K^{*}} \sin \theta_{l} \cos \phi$$ $$+(I_{6}^{s} \sin^{2}\theta_{K^{*}} + I_{6}^{c} \cos^{2}\theta_{K^{*}}) \cos \theta_{l} + I_{7} \sin 2\theta_{K^{*}} \sin \theta_{l} \sin \phi$$ $$+I_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \sin \phi + I_{9} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{l} \sin 2\phi.$$ I_j : experimental observables: angular correlations ightarrow complete information on $B ightarrow K^* \mu \mu$ ## I_j and Form Factors/Wilson Coefficients Relation between observables I_j and $\langle K^* \mu \mu | \mathcal{H}_{\text{eff}} | B \rangle$ given in terms of transversity amplitudes $A_{\parallel,\perp,0,t}$, e.g. $$I_6^s = 2eta_\ell \left[\mathsf{Re}(A_\parallel^L A_\perp^{L^*}) - (L o R) ight],$$ with $$A_{\perp L,R} = N\sqrt{2}\lambda^{1/2} \left[\left[(C_9^{\text{eff}} + C_9^{\text{eff}\prime}) \mp (C_{10} + C_{10}') \right] \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7^{\text{eff}\prime}) T_1(q^2) \right]$$ $$A_{\parallel L,R} = -N\sqrt{2}(m_B^2 - m_{K^*}^2) \left[(C_9^{\text{eff}} - C_9^{\text{eff}\prime}) \mp (C_{10} - C_{10}') \right] \frac{A_1(q^2)}{m_B - m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} - C_7^{\text{eff}\prime}) T_2(q^2) \right]$$ ## A few comments on I_j ## A few comments on I_j - ullet I_j contain complete information to be extracted from the decay - for massless leptons, $I_1^s=3I_2^s$ and $I_1^c=-I_2^c$ - I_6^c = 0 in SM; a non-zero value is due to contributions from scalar operators and $m_l \neq 0$. Potentially good observable for extended Higgs sector! #### **Observables** - order principle: behaviour under CP trafos: I_j from b (\bar{B}^0) decay, \bar{I}_j from \bar{d} (B^0) decay - ullet CP-even (CP-averaged) $I_j + ar{I}_j$, CP-odd $I_j ar{I}_j$ - normalize by $d(\Gamma + \bar{\Gamma})/dq^2$ (q^2 : invariant dilepton mass) - lacksquare new standard observables: symmetries S_j and asymmetries A_j : $$S_j = \frac{I_j + \bar{I}_j}{d(\Gamma + \bar{\Gamma})/dq^2}, \qquad A_j = \frac{I_j - \bar{I}_j}{d(\Gamma + \bar{\Gamma})/dq^2}$$ Taking ratios reduces theory errors! - advantage symmetries: increased statistics - advantage asymmetries: sensitivity to new CP-violating phases induced by BSM (all A_j very close to 0 in SM) #### Relation to Known Observables #### Forward-backward asymmetry: $$A_{\rm FB} = \frac{3}{8} \left(2S_6^s + S_6^c \right)$$ Transverse asymmetries: (Krüger/Matias) $$A_T^{(2)} = \frac{S_3}{2 S_2^s}$$ $$A_T^{(3)} = \left(\frac{4 S_4^2 + S_7^2}{-2 S_2^c (2 S_2^s + S_3)}\right)^{1/2}$$ $$A_T^{(4)} = \left(\frac{S_5^2 + 4 S_8^2}{4 S_4^2 + S_7^2}\right)^{1/2}$$ Note: while all S_i and A_i are well-behaved, the $A_T^{(i)}$ can, in principle, have (highly-theory dependend) peaks from small denominators. #### Relation to Known Observables #### Forward-backward asymmetry: $$A_{\rm FB} = \frac{3}{8} \left(2S_6^s + S_6^c \right)$$ Transverse asymmetries: (Krüger/Matias) $$A_T^{(2)} = \frac{S_3}{2 S_2^s}$$ $$A_T^{(3)} = \left(\frac{4 S_4^2 + S_7^2}{-2 S_2^c (2 S_2^s + S_3)}\right)^{1/2}$$ $$A_T^{(4)} = \left(\frac{S_5^2 + 4 S_8^2}{4 S_4^2 + S_7^2}\right)^{1/2}$$ Note: while all S_i and A_i are well-behaved, the $A_T^{(i)}$ can, in principle, have (highly-theory dependend) peaks from small denominators. ## Observables (SM): Symmetries ## **Observables (SM): Asymmetries** ## How to measure S_i and A_i ? - full angular spectrum - or: suitable integrals - if observable is smooth in q^2 : $$S_i(q^2) \to \langle S_i \rangle \equiv \int_{1 \, \text{GeV}^2}^{6 \, \text{GeV}^2} dq^2 \, S_i(q^2)$$ (QCD factorization only valid for small q^2 : choose interval $1 \, \text{GeV}^2 \le q^2 \le 6 \, \text{GeV}^2$ below (theory) charm threshold $4m_c^2$) \bullet for S_5 , e.g., only need small number of bins in angles: $$S_{5} = -\frac{4}{3} \left[\int_{\pi/2}^{3\pi/2} - \int_{0}^{\pi/2} - \int_{3\pi/2}^{2\pi} d\phi \left[\int_{0}^{1} - \int_{-1}^{0} d\cos\theta_{K} \right] \right] d\phi + \left[\int_{0}^{1} - \int_{-1}^{0} d\cos\theta_{K} \int_{0}^{1} d\theta_{K} \right] d\phi + \left[\int_{0}^{1} - \int_{0}^{1} d\theta_{K} \right] d\phi + \left[\int_{0}^{$$ ## Features to look for in S_i and A_i - $lue{}$ zeros in S_i - lacksquare in S_6 (forward-backward asymmetry), also in $S_{4,5}$ - $lue{}$ correlation between zeros and $\mathsf{BR}(B o X_s \gamma)$ - large A_i (larger than O(1%)) - due to new CP-violating phases - ullet non-zero S_6^c : evidence for BSM scalar operators # How to find New Physics ## → Aoife Bharucha's talk ## **Summary** - \blacksquare $B \to K^* \mu \mu$ is an ideal channel to find new physics in the flavour sector at the LHC - high sensitivity to new CP-violating phases - alternatively, with mass scales of NP fixed by Atlas/CMS, the decay can help to constrain NP couplings - theoretical description based on - effective Hamiltonian: known to NNLL accuracy in SM, plus one-loop NP effects (complete MSSM, MSSM with various constraints, little Higgs model) (Buras et al., 200x) - form factors: QCD sum rules on the light-cone (Ball/Zwicky 04, Ball 08) - QCD factorisation (Beneke/Feldmann/Seidel 01+04) - theoretical uncertainty well under control as only ratios (symmetries + asymmetries) considered - LHC will collect enough data to allow analysis of full angular spectrum (may need upgrade?)