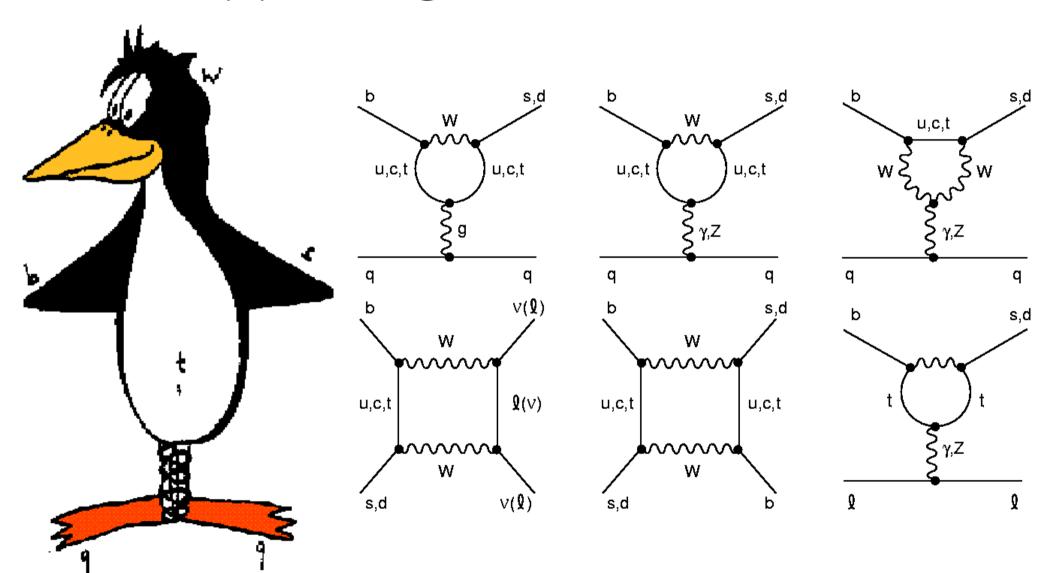
$B o K^* \mu \mu$ in the SM and Beyond Patricia Ball

in collaboration with W. Altmannshofer, A. Buras, D. Straub, M. Wick (TU München) and A. Bharucha (IPPP Durham)

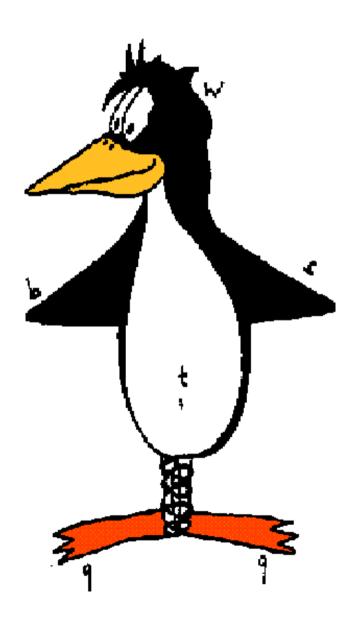
based on arXiv:0811.1214

Lancaster, Nov 12 2008


Anything wrong with $b \rightarrow s$?

- time-dependent CP asymmetry in $b \to s$: $S_{\Phi K} \neq S_{J/\psi K}$
- lacktriangle hints at large B_s mixing phase from Tevatron

If there are BSM sources for the above, they will be found at the LHC:


- $lue{}$ B_s mixing phase
- $B_s \to \mu^+ \mu^-$

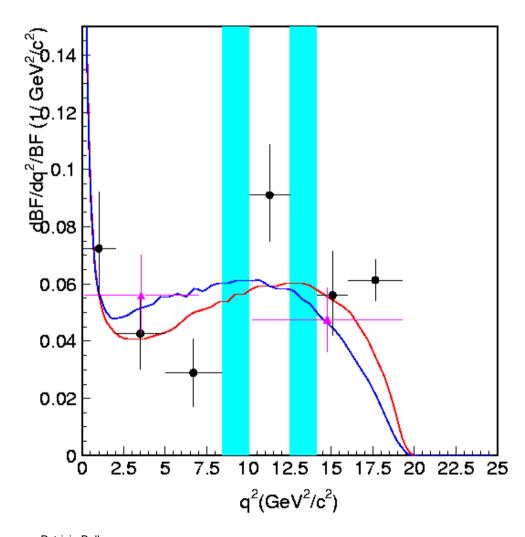
$B o K^*\mu\mu$ – Diagrams

Patricia Ball ∇ – p.2

$B o K^* \mu \mu$ – Diagrams

- $b \rightarrow s\ell^+\ell^-$ is FCNC (flavour-changing neutral current) forbidden at tree-level in the SM
- in the SM induced by one-loop penguin and one-loop box diagrams
- new physics also at one loop (e.g. MSSM) or possibly tree-level (e.g. FC neutral Higgs) [heavily suppressed]
- related decay $b \rightarrow s\gamma$ extensively studied at B factories
 - also FCNC, but with less sensitivity to BSM than $b \to s \ell^+ \ell^-$ (less operators in effective Hamiltonian, less observables)
 - difficult at the LHC because of γ ; $\mu^+\mu^-$ has better detection efficiency

$B o K^* \mu \mu$ – Data


Current status (ICHEP 08) at B factories and Tevatron:

Experiment	BaBar	Belle	CDF
$\mathcal{B}(B \to K^* \mu^+ \mu^-) \times 10^7$	$11.1 \pm 1.9 \pm 0.7$	$10.8^{+1.0}_{-1.0} \pm 0.9$	$8.1 \pm 3.0 \pm 1.0$
# of events	? (ca. 1/2 of Belle)	230(!)	?

Patricia Ball ∇ – p.3

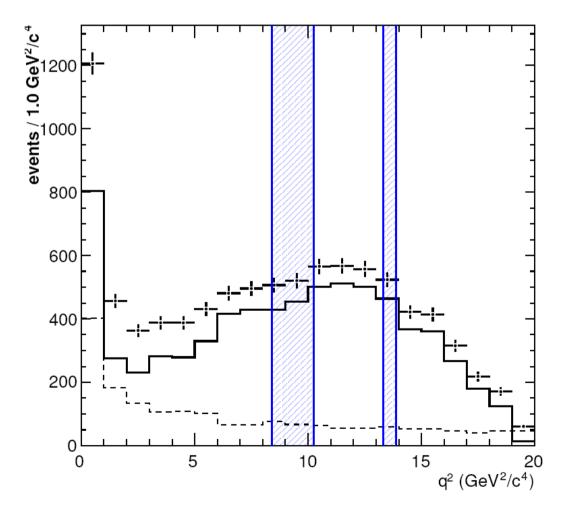
$B o K^* \mu \mu$ – Data

Current (Belle) measurement of dilepton mass spectrum (230 events):

$B o K^* \mu \mu$ – Data

Current (Belle) measurement of dilepton mass spectrum (230 events):

dBF/dq²/BF (1/ GeV²/c²) 0.06 0.04 0.02


10

 $q^2(GeV^2/c^2)$

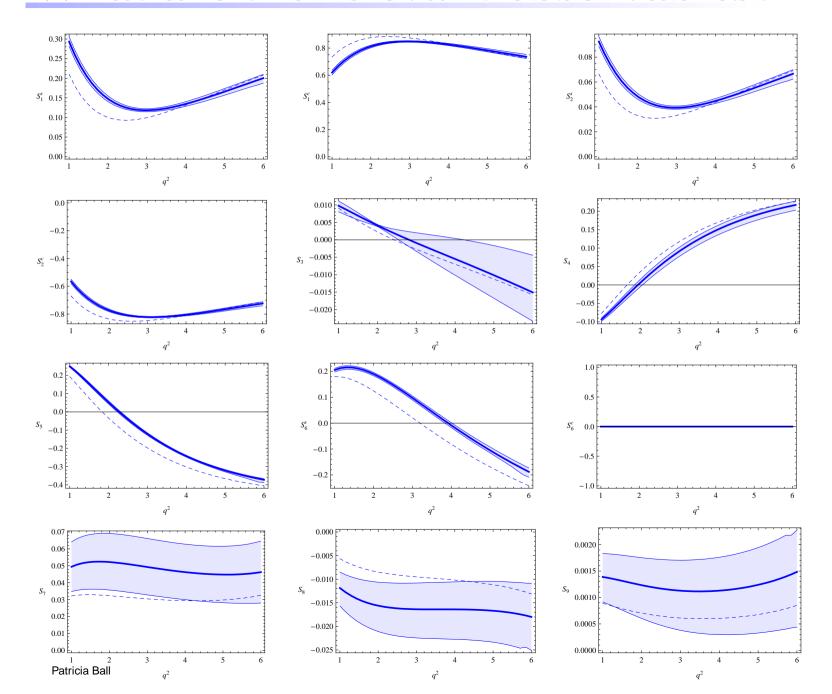
12.5 15 17.5

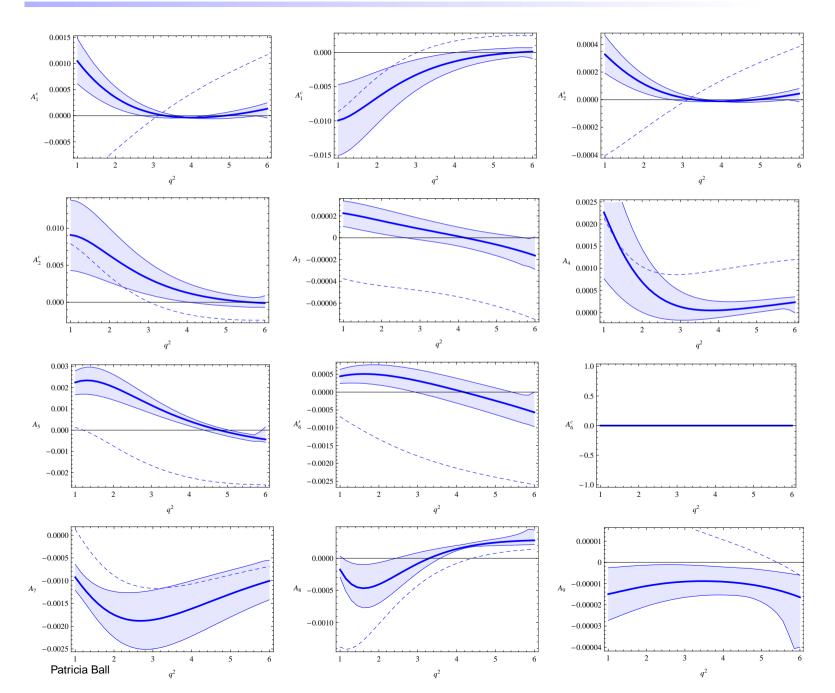
20 22.5 25

Projection: LHCb with 7200 events $(2 \text{ fb}^{-1}, \text{ i.e. 1y of running})$

The usual suspects:

- branching ratio
- dilepton mass spectrum
- forward-backward asymmetry


Anything else?


The usual suspects:

- branching ratio
- dilepton mass spectrum
- forward-backward asymmetry

Anything else?

More than you think!

The big questions:

The big questions:

- how to calculate $B \to K^* \mu^+ \mu^-$ decays
- how to define observables
- how to find new physics

The big questions:

- how to calculate $B \to K^* \mu^+ \mu^-$ decays \to this talk
- how to define observables → this talk
- how to find new physics → next talk (A. Bharucha)

How to calculate

The B Physicist's Toolbox

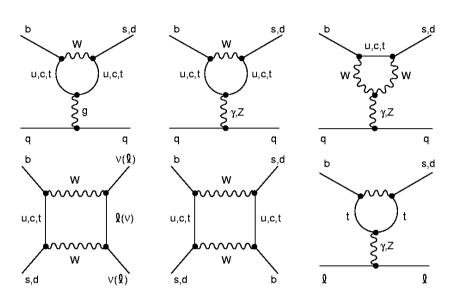
For exclusive decays:

- effective field theories
 - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$)
 - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$)

The B Physicist's Toolbox

For exclusive decays:

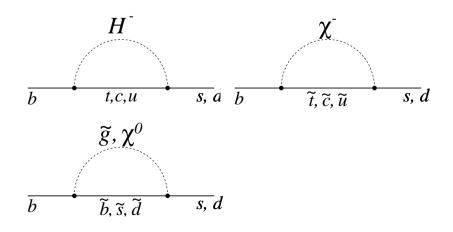
- effective field theories
 - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$)
 - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$)
- hadronic matrix elements (→ form factors): nonperturbative methods (lattice, QCD sum rules on the light-cone)


Patricia Ball ∇ – p.8

The B Physicist's Toolbox

For exclusive decays:

- effective field theories
 - disentangle physics governed by different mass scales (SM: $m_W, m_t \gg m_b \gg \Lambda_{\rm QCD}$)
 - evolution between scales governed by renormalisation group equations (known to 3-loop accuracy for $b \to s\ell^+\ell^-$)
- hadronic matrix elements (→ form factors): nonperturbative methods (lattice, QCD sum rules on the light-cone)
- hard spectator effects etc.: QCD factorization


The Effective Hamiltonian

Possible (MSSM):

Patricia Ball

BSM diagrams

- calculate diagrams in full theory (SM or BSM)
- match to effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \times \text{CKM} \times \sum_{i} \frac{C_i(\mu)\mathcal{O}_i(\mu)}{}$$

with Wilson coefficients C_i and (e.g. 4-quark) operators \mathcal{O}_i

• μ is renormalisation scale. Matching done at $\mu \approx m_W$. For B physics, need to know C_i at $\mu \approx m_b$: solve RG equations

$$\mu \frac{d}{d\mu} \vec{C}(\mu) = \gamma^T \vec{C}(\mu)$$

- anomalous dimensions γ known to 3-loop accuracy (Gorbahn/Haisch/Misiak 04+05)
- initial conditions $C_i(m_W)$ known to 2-loop accuracy (Bobeth/Misiak/Urban 99)

 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V.

 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V.

 $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$.

 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V.

 $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$.

All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08)

Patricia Ball ∇ – p.10

 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V.

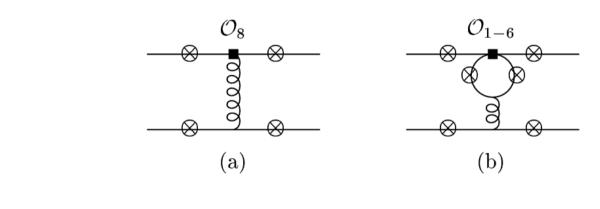
 $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$.

All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08)

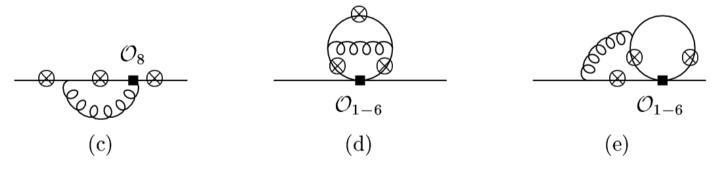
Want to know more?

 $\langle K^*|(V-A)_{\mu}|B\rangle$ expressed in terms of $A_{0,1,2}$ and V.

 $\langle K^*|\bar{s}F_{\mu\nu}\sigma^{\mu\nu}(1+\gamma_5)b|B\rangle$ expressed in terms of $T_{1,2,3}$.


All 7 FFs calculated from QCD sum rules on the light cone. (Ball/Zwicky 04 + Ball 08)

Want to know more?



QCD Factorisation

(Beneke/Feldmann/Seidel 01+04)

 \otimes = emission of photon

Include matrix elements of operators which are not related to form factors.

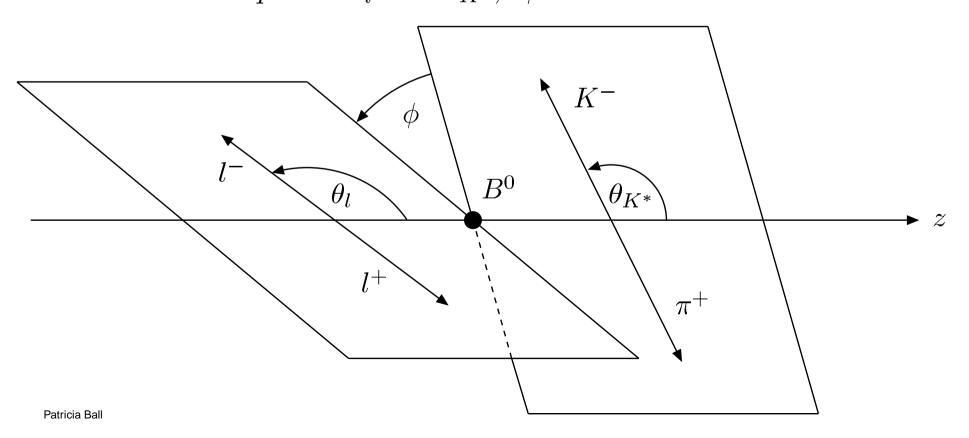
- $lue{}$ mostly $O(\alpha_s)$ corrections
- plus weak annihilation: diagrams with quarks in B meson annihilating

How we differ from our competitors

Recent analyses: Bobeth/Hiller/Piranishvili 08, Egede et al. 08

We use:

- full set of 7 form factors with correlated errors (instead of 2 form factors in heavy quark limit)
- full analysis of all observables
- large set of BSM models


How to define observables

Kinematics

 K^* decays to $K\pi$ (\approx 100 %). Angular distribution of $K\pi$ indicative for polarisation of K^* .

Full angular spectrum:

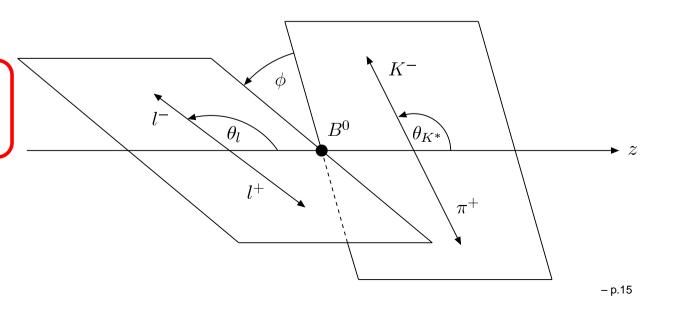
$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*}, d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$

Kinematics

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*}, d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$

$$I(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi) = I_{1}^{s} \sin^{2}\theta_{K^{*}} + I_{1}^{c} \cos^{2}\theta_{K^{*}} + (I_{2}^{s} \sin^{2}\theta_{K^{*}} + I_{2}^{c} \cos^{2}\theta_{K^{*}}) \cos 2\theta_{l}$$

$$+I_{3} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{l} \cos 2\phi + I_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \cos \phi$$


$$+I_{5} \sin 2\theta_{K^{*}} \sin \theta_{l} \cos \phi$$

$$+(I_{6}^{s} \sin^{2}\theta_{K^{*}} + I_{6}^{c} \cos^{2}\theta_{K^{*}}) \cos \theta_{l} + I_{7} \sin 2\theta_{K^{*}} \sin \theta_{l} \sin \phi$$

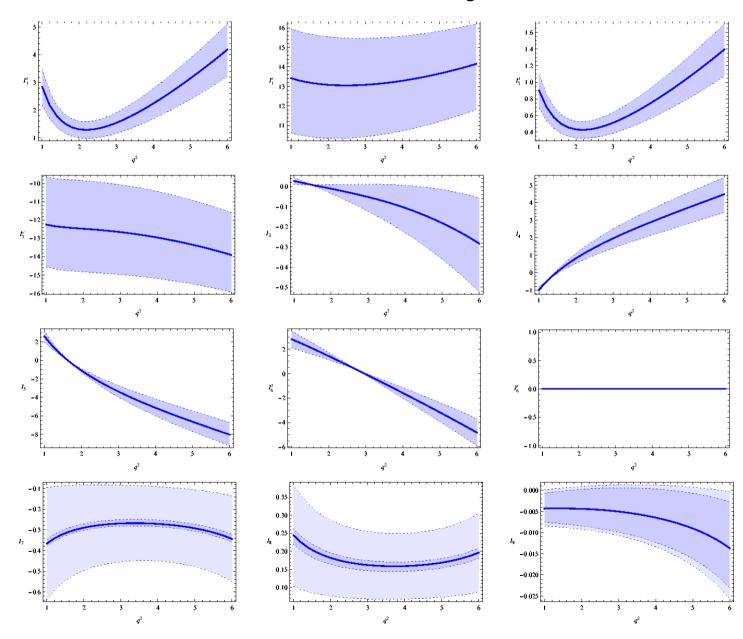
$$+I_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \sin \phi + I_{9} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{l} \sin 2\phi.$$

 I_j : experimental observables: angular correlations

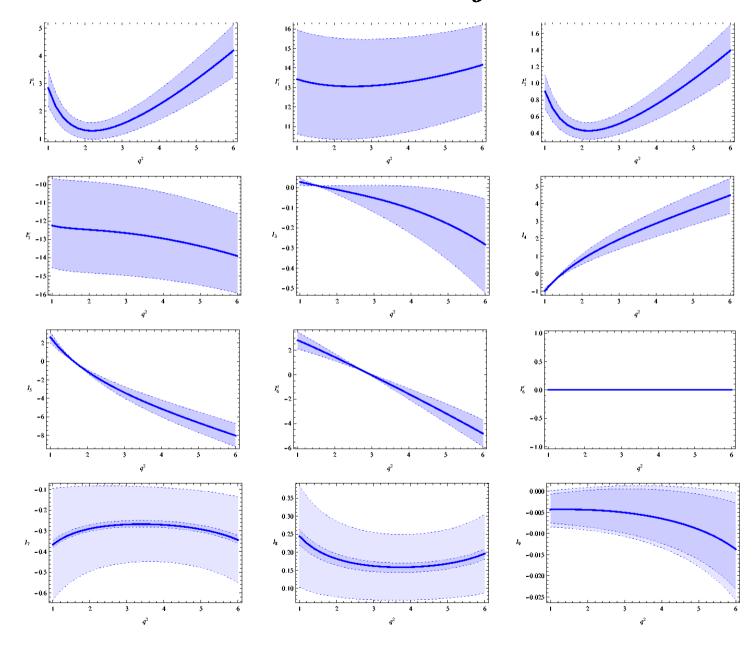
ightarrow complete information on $B
ightarrow K^* \mu \mu$

I_j and Form Factors/Wilson Coefficients

Relation between observables I_j and $\langle K^* \mu \mu | \mathcal{H}_{\text{eff}} | B \rangle$ given in terms of transversity amplitudes $A_{\parallel,\perp,0,t}$, e.g.


$$I_6^s = 2eta_\ell \left[\mathsf{Re}(A_\parallel^L A_\perp^{L^*}) - (L o R)
ight],$$

with


$$A_{\perp L,R} = N\sqrt{2}\lambda^{1/2} \left[\left[(C_9^{\text{eff}} + C_9^{\text{eff}\prime}) \mp (C_{10} + C_{10}') \right] \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7^{\text{eff}\prime}) T_1(q^2) \right]$$

$$A_{\parallel L,R} = -N\sqrt{2}(m_B^2 - m_{K^*}^2) \left[(C_9^{\text{eff}} - C_9^{\text{eff}\prime}) \mp (C_{10} - C_{10}') \right] \frac{A_1(q^2)}{m_B - m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} - C_7^{\text{eff}\prime}) T_2(q^2) \right]$$

A few comments on I_j

A few comments on I_j

- ullet I_j contain complete information to be extracted from the decay
- for massless leptons, $I_1^s=3I_2^s$ and $I_1^c=-I_2^c$
- I_6^c = 0 in SM; a non-zero value is due to contributions from scalar operators and $m_l \neq 0$. Potentially good observable for extended Higgs sector!

Observables

- order principle: behaviour under CP trafos: I_j from b (\bar{B}^0) decay, \bar{I}_j from \bar{d} (B^0) decay
 - ullet CP-even (CP-averaged) $I_j + ar{I}_j$, CP-odd $I_j ar{I}_j$
- normalize by $d(\Gamma + \bar{\Gamma})/dq^2$ (q^2 : invariant dilepton mass)
- lacksquare new standard observables: symmetries S_j and asymmetries A_j :

$$S_j = \frac{I_j + \bar{I}_j}{d(\Gamma + \bar{\Gamma})/dq^2}, \qquad A_j = \frac{I_j - \bar{I}_j}{d(\Gamma + \bar{\Gamma})/dq^2}$$

Taking ratios reduces theory errors!

- advantage symmetries: increased statistics
- advantage asymmetries: sensitivity to new CP-violating phases induced by BSM (all A_j very close to 0 in SM)

Relation to Known Observables

Forward-backward asymmetry:

$$A_{\rm FB} = \frac{3}{8} \left(2S_6^s + S_6^c \right)$$

Transverse asymmetries: (Krüger/Matias)

$$A_T^{(2)} = \frac{S_3}{2 S_2^s}$$

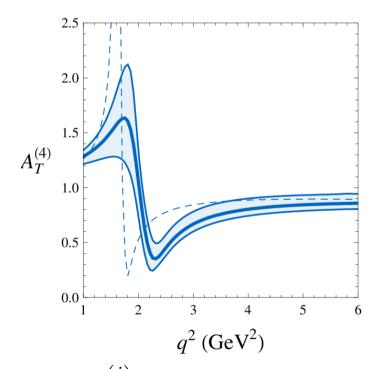
$$A_T^{(3)} = \left(\frac{4 S_4^2 + S_7^2}{-2 S_2^c (2 S_2^s + S_3)}\right)^{1/2}$$

$$A_T^{(4)} = \left(\frac{S_5^2 + 4 S_8^2}{4 S_4^2 + S_7^2}\right)^{1/2}$$

Note: while all S_i and A_i are well-behaved, the $A_T^{(i)}$ can, in principle, have (highly-theory dependend) peaks from small denominators.

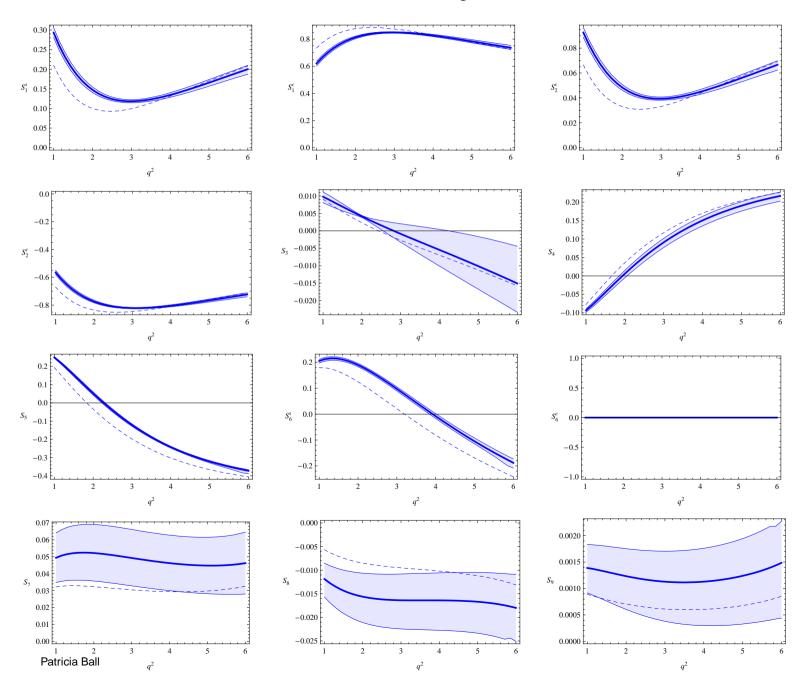
Relation to Known Observables

Forward-backward asymmetry:

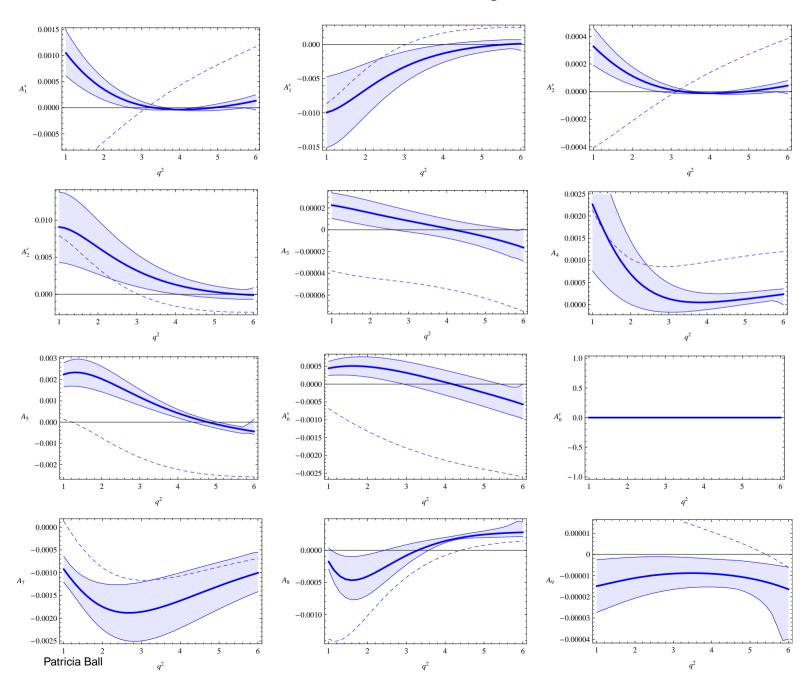

$$A_{\rm FB} = \frac{3}{8} \left(2S_6^s + S_6^c \right)$$

Transverse asymmetries: (Krüger/Matias)

$$A_T^{(2)} = \frac{S_3}{2 S_2^s}$$


$$A_T^{(3)} = \left(\frac{4 S_4^2 + S_7^2}{-2 S_2^c (2 S_2^s + S_3)}\right)^{1/2}$$

$$A_T^{(4)} = \left(\frac{S_5^2 + 4 S_8^2}{4 S_4^2 + S_7^2}\right)^{1/2}$$



Note: while all S_i and A_i are well-behaved, the $A_T^{(i)}$ can, in principle, have (highly-theory dependend) peaks from small denominators.

Observables (SM): Symmetries

Observables (SM): Asymmetries

How to measure S_i and A_i ?

- full angular spectrum
- or: suitable integrals
 - if observable is smooth in q^2 :

$$S_i(q^2) \to \langle S_i \rangle \equiv \int_{1 \, \text{GeV}^2}^{6 \, \text{GeV}^2} dq^2 \, S_i(q^2)$$

(QCD factorization only valid for small q^2 : choose interval $1 \, \text{GeV}^2 \le q^2 \le 6 \, \text{GeV}^2$ below (theory) charm threshold $4m_c^2$)

 \bullet for S_5 , e.g., only need small number of bins in angles:

$$S_{5} = -\frac{4}{3} \left[\int_{\pi/2}^{3\pi/2} - \int_{0}^{\pi/2} - \int_{3\pi/2}^{2\pi} d\phi \left[\int_{0}^{1} - \int_{-1}^{0} d\cos\theta_{K} \right] \right] d\phi + \left[\int_{0}^{1} - \int_{-1}^{0} d\cos\theta_{K} \right] d\phi + \left[\int_{0}^{1} - \int_{0}^{1} d\theta_{K} \right] d\phi + \left[\int_{0}^{1} - \int_{0}^{1} d\theta_{K} \right] d\phi + \left[\int_{0}^{$$

Features to look for in S_i and A_i

- $lue{}$ zeros in S_i
 - lacksquare in S_6 (forward-backward asymmetry), also in $S_{4,5}$
 - $lue{}$ correlation between zeros and $\mathsf{BR}(B o X_s \gamma)$
- large A_i (larger than O(1%))
 - due to new CP-violating phases
- ullet non-zero S_6^c : evidence for BSM scalar operators

How to find New Physics

→ Aoife Bharucha's talk

Summary

- \blacksquare $B \to K^* \mu \mu$ is an ideal channel to find new physics in the flavour sector at the LHC
- high sensitivity to new CP-violating phases
- alternatively, with mass scales of NP fixed by Atlas/CMS, the decay can help to constrain NP couplings
- theoretical description based on
 - effective Hamiltonian: known to NNLL accuracy in SM, plus one-loop NP effects (complete MSSM, MSSM with various constraints, little Higgs model) (Buras et al., 200x)
 - form factors: QCD sum rules on the light-cone (Ball/Zwicky 04, Ball 08)
 - QCD factorisation (Beneke/Feldmann/Seidel 01+04)
- theoretical uncertainty well under control as only ratios (symmetries + asymmetries) considered
- LHC will collect enough data to allow analysis of full angular spectrum (may need upgrade?)