B Physics at CDF

Louise Oakes

University of Oxford
IOP HEPP meeting: Beautiy Physics in the UK
12th November 2008

Overview

\lrcorner Introduction

- The CDF detector

B liffetimes
B_{s} mixing and CPV

- B baryon resultis
- Further resulis
- Summary

Introduction

$\lrcorner>4$ fib ${ }^{-1}$ of datia written to tape

- Taking ~ 40pb.-1 per week
- c.f. Run-l total JLdt $=110 \mathrm{p} \mathrm{b}^{-1}$
- Up to 8.8fib-1 data could be provided by October 2010
- $p \bar{p}$ collisions have advantages and challenges for B physjes:
- Large cross sections - high yield
- Large background - need sophisticated triggers
- Areas of interest:
- B lifetimes
- CP Violation
- Discovery
- Rare decays

CDF detector

CDF strengins for B physics:

- Tracking
- Centrall drift chamber and silicon vertex detector in 1.4 T magnetic field
- Excellent vertex resolution ~23um
- p_{T} resolution: $\sigma\left(p_{T}\right) / \rho_{T}^{2} \sim 0.1 \%$
- Particle ID
- dE/dx: 1.5σ K-匹 separation at $p>2 \mathrm{GeV} / \mathrm{c}$
- TOF: 20 K- separation at $p>1.5 \mathrm{GeV} / \mathrm{c}$
- Trigger
- $\mathrm{J} / \mathrm{\psi}$
- Hadronic trigger - displaced vertex

The Sillicon Vertex

 DetectorI Important component for
B physjes

- Silicon detector comprised of:

SVX-II, ISL \& L00

- $7 \mathrm{~m}^{2}$ of Silicon sensors arranged as 8 concentric layers
- 722,432 channels read-out by 5456 chips
- Provides precision tracking
- Primary \& displaced vertices
- Innovative use of Sillicon in hardware displaced vertex trigger

B Lifetimes

- Testing HQET - models lifetimes of hadrons containing at least one heavy quark such as b
- Expect $\tau\left(B^{+}\right)>\tau\left(B^{0}\right) \approx \tau\left(B_{s}^{0}\right)>\tau\left(\Lambda_{b}^{0}\right) \geqslant \tau\left(B_{c}^{+}\right)$

Λ_{b} Lifetime Measurement

- Λ_{b} lifetime measured in
$\Lambda_{b} \rightarrow \Lambda_{c} \pi$
- Sample collected using two displaced track trigger
- 2-stage fit:
- First fitt Λ_{b} mass
- Second, unbinned maximum likelihood 2D fitt of lifetime and error.
- More compatible with world

CDF II Preliminary, L=1.1 fb^{-1}
 average than previous result using $\Lambda_{b} \rightarrow J / \mu \Lambda$

$$
\begin{aligned}
& c \tau\left(\Lambda_{b}^{0}\right)=423 \pm 14 \text { (stat) } \pm 9 \text { (syst) } \mu \mathrm{m} \\
& \operatorname{c\tau }\left(\Lambda_{b}^{0}\right) / c \tau\left(B^{0}\right)=0.92 \pm 0.04
\end{aligned}
$$

http://www-cdf.fnal.gov/physics/new/bottom/080703.blessed-|blcpi-ct

MC Free Measurement

of B^{+}Lifetime

- Uses new method for correcting trigger bias:
- Acceptance function corrects for bias event-by-event
- Converts impact parameter trigger into effective lifetime cut
- No MC, so no systematic error due to simulation

$$
\begin{aligned}
& c \tau\left(B^{+}\right)=498.2 \pm 6.8 \text { (stat.) } \pm 4.5 \text { (syst.) } \mu \mathrm{m} \\
& \left(c \tau\left(B^{+}\right)=491.1 \pm 3.3 \mu \mathrm{~m}, \text { PDG } 2008\right. \text {) }
\end{aligned}
$$

http://www-cdf.fnal.gov/physics/new/bottom/080612.blessed-MCfree Blifetime

B_{c} Lifetime Measurement

- Uses semileptonic modes:
$B_{c}^{ \pm} \rightarrow J / \psi+I^{ \pm}+X$
- Fit e, μ channels separately, then combine likelihood
- Agrees with theoreticell predictions

$\mathrm{c} \mathrm{\tau}\left(\mathrm{~B}_{\mathrm{c}}{ }^{+}\right)=142 \pm 15$ (stat) ± 6 (syst) $\mu \mathrm{m}$

http://www-cdf.fnal.gov/physics/new/bottom/ 080327.blessed-BC LT SemiLeptonic

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}^{*} \pi X$ Lifetime Update

- Analysis of fully reconstructed mode in twotrack trigger that exploits $2 x$ addifionall statistics from partially reconstructed decays.
- Now agrees with HQET predictions that
$\operatorname{c\tau }\left(\mathrm{B}_{\mathrm{s}}{ }^{0}\right) \sim \mathrm{c} \mathrm{\tau}\left(\mathrm{~B}^{0}\right)$

$\mathrm{C} \mathrm{\tau}\left(\mathrm{~B}_{\mathrm{s}}{ }^{0}\right)=455 \pm 12$ (stat.) ± 7 (syst.) $\mu \mathrm{m}$

prob $=0.017$
http://www-cdf.fnal.gov/physics/new/bottom/080207.blessed-bs-lifetime

CPV in B_{s} System
 - Sensitive to New Physics

Neutiral B_{s} System

$\lrcorner \mathrm{B}_{\mathrm{s}}$ mixing governed by Schrödlinger eqn.:

$$
i \frac{d}{d t}\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}=\left(\mathrm{M}-\frac{i}{2} \boldsymbol{\Gamma}\right)\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}
$$

- Gives rise to 2 mass eigenstates, $\mathrm{B}_{\mathrm{s}}{ }^{H}$ and $\mathrm{B}_{\mathrm{s}}{ }^{L}$.
- Study of CPV and oscillations give access to parameters of interest:

$$
\begin{aligned}
& \Delta \mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{H}}-\mathrm{m}_{\mathrm{L}} \approx 2 \mid \mathrm{M}_{12} \mathrm{l} \\
& \Delta \Gamma=\Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}} \approx 2 \mid \Gamma_{12} \cos \left(\varphi_{\mathrm{s}}\right) \\
& \varphi_{\mathrm{s}}=\arg \left(-\mathrm{M}_{12} / \Gamma_{12}\right) \sim 0.004 \text { in SM } \\
& \beta_{\mathrm{s}}^{\mathrm{J} / \psi \varphi}=\arg \left(-\mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*} / \mathrm{V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}\right) \sim 0.02 \text { in } \mathrm{SM}
\end{aligned}
$$

B_{s} Oscillations

- In 2006: First observation of $\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{s}}$ oscillation frequency.
- Fit oscillation amplitude, $A_{\text {, }}$ fixing Δm_{s} to a probe value.
- Expect amplifude consistient with $A=1$ at true value of $\Delta \mathrm{m}_{\mathrm{s}}$
- Mixing frequency constrains magnitude of possible NP
- Phase of any NP amplitude is
 unconstrained...
- Time evolution of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \varphi$

$$
\Delta m_{s}=17.77 \pm 0.10 \text { (stat) } \pm 0.07 \text { (sys) } \mathrm{ps}^{-1}
$$ decays sensitive to NP phase:

PRL 97, 242003, 2006

- Interference between decay and mixing + decay.

Sensitivity to New Physics: $\beta_{\mathrm{s}} \mathrm{J} / \psi \varphi \mathrm{and} \Delta \Gamma$

- Flavourr tagged $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{~J} / \mathrm{L} / \mathrm{p}$ finds 1.8σ (p-value $=7 \%$) discrepancy with SM for $\beta_{\mathrm{s}}^{\mathrm{J}} \mathrm{J} / \mathrm{Lu}$
- Still compatible with a stetifistical fluctuation, but similar effect observed by D0
- Increased statiistics may provide evidence for NP...
- Recent updated analysis with $2.8 f b^{-1}$ improves precision of published $1.3 f b^{-1}$ result.

http://www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged BsJPsiPhi update prelim

B Baryon Observations at CDF

Ξ_{6} Observation and mass

measurement

"Cascade B" first observed at the Tevatiron in 2007

- Uses fully reconstructed decay:

$$
\Xi_{\mathrm{b}}^{-} \rightarrow \mathrm{J} / \psi \Xi^{-} \rightarrow\left[\mu^{+} \mu^{-}\right]\left[\Lambda^{0} \pi^{-}\right], \Lambda^{0} \rightarrow \mathrm{p} \pi^{-}
$$

$$
m\left(\Xi_{b}\right)=5792.9 \pm 2.5 \text { (stat.) } \pm 1.7 \text { (syst.) MeV/c² }
$$

- Statistical significance of Ξ_{6} signal is $>7 \sigma$

PRL 99, 052002, 2007

More resultis

\lrcorner Search for FCNC rare decays $\mathrm{B}_{\text {s(d) }} \rightarrow \mu^{+} \mu^{-}$

- Properties of $X(3872)$:
- Nature of particle still being investigatied
- Precise mass measurement
$m(X(3872))=3871.61 \pm 0.16$ (stat) ± 0.19 (syst) $\mathrm{MeV} / \mathrm{c}^{2}$
- Observed in decay $X(3872) \rightarrow J / 4 \pi^{+} \pi \pi^{+}$
http://www-cdf.fnal.gov/physics/new/bottom/080724.blessed-X-Mass
」 Mass and width measurement of orbitally excited ($L=1$) B B^{2} mesons.

$$
\mathrm{m}\left(\mathrm{~B}_{1}\right)=5725.3^{+1.6}{ }_{-2.2}(\text { stat })^{+1.4}{ }_{-1.5}(\text { syst }) \mathrm{MeV} / \mathrm{c}^{2}
$$

http://www-cdf.fnal.gov/physics/new/bottom/070726.blessed-bss/

- And many more. . .htto:/l/www-cdf.fnal.gov/physics/new/bottom/bottom.html

Summary

- CDF has highly successful B physics program
- competitive (B^{0} and B^{+}modes) and complementary ($\mathrm{B}_{\mathrm{s}}, \mathrm{B}_{\mathrm{c}}$, baryons) to B factories.
- First analysis of flavour-tagged $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / 4 \mu \varphi$ decays shows 1.8 o fluctuation w.r.t SM - possible hint of New Physics
- Discovery of new resonances, and world best resultis of lifetimes, masses and other properties.
- Shown results based on samples which will be doubled to tripled in a year's time - will keep having an impact in forthcoming years...

Backup Slides

B_{s} studies at CDF

\lrcorner High yield of $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \mu \varphi$

- Important channel for CPV studies
- Interference between mixing and decays yields phase measurements
- Tagging performance:
- Opposite side tagger $\varepsilon \mathrm{D}^{2} \sim 1.2 \%$
- Same side tagger $\varepsilon D^{2} \sim 3.6 \%\left(\right.$ in B_{s})
\lrcorner Uses PID (TOF, dE/dx)

Λ_{b} Lifetime backup

$-1.1 \mathrm{ff}^{-1}$ Iumi

- Displaced tirack trigger dataset
- Not exponential due to trigger bias corrected for using MC simulation leading to 9 um systematic.

MC free method backup

$\lrcorner 1.0 \mathrm{Fib}^{-1}$ Iumil, 24200 ± 200 sig. events

- $\mathrm{B}^{+} \rightarrow \mathrm{D}^{0} \pi$
- Impact parameter trigger intrinsically biases the lifetime measurement
- Event by event decay kinematics used to correct for bias - acceptance function converts applied IP cuts to lifetime cuits for each event.
- 1 st measurement to correct bias without MC
- Applicable to future experiments with IP trigger, eg LHCb

B_{c} Lifetime backup

$\lrcorner 1 \mathrm{f}^{\prime} \mathrm{b}^{-1}$

- J/uر-> u, trigger has no lifetime bias
- Challenge is dealling with bkg model - missing v so no mass peak - difificult to discriminate between sig and bkg. See MC mass plot.
- Analyse $J / \psi \psi+1$ candidates in inverse mass range $4-6 G e V / c^{2}\left(B_{c}\right.$ expected region)

B_{s} Lifetime backup

- $1.3 f^{6-1}$
- Uses MC to correct for TTT bias
- 1100 fully reconstiructed $B_{s} \rightarrow D^{-}$ $\mathrm{s}\left(\varphi \pi^{\pi}\right) \pi^{+}$
- Similar number of partially reconstiructed B_{s} candidates eg. $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{-5}^{-} \rho^{+}\left(\pi^{+} \pi^{0}\right)$ where π^{0} is not reconstiructed - come from actual B_{s} so can contribute to lifetime.
- Treated like semileptonic events.
- Uncertainty due to missing tracks or misaligned masses can be accounted for and included in likelinood formula.

B_{s} mixing backup

」 $1.0 \mathrm{ff}^{-1}$
－ 5600 fully reconstructed hadronic B_{s} decays
」 3100 partially reconstructed hadronic B_{s} decays
」 61500 partiallly reconstiructed semileptonic B_{s} decays
－Measure probabilitity，as function of proper decay time，that B_{s} decays with same or opposite flavour as the fiavour at production．Gives signal peak for $\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{s}}$ oscillations．
－Probability of random fluctuations causing this $=8 \times 10^{-8}>5 \sigma$

Log of ratio of likelihoods for $A=1$ and $A=0$ vs．osc．frequency

$\beta_{s} \mathrm{~J} / 4 \varphi$ and $\Delta \Gamma$ backup

」 3150 sig, events - currently lacking PID in 2nd half of dataset

- Feldman-Cousins likelinood ratio used to determine confidence level for 20×40 grid evenly spaced in $\beta_{s}, \Delta \Gamma$.
- 2 minima due to exact symmetry in transformation: $2 \beta_{s} \rightarrow \pi-2 \beta_{s}$, $\Delta \Gamma \rightarrow>-\Delta \Gamma, \delta_{\mu /}>2 \pi-\delta_{,} \delta_{\text {perpe }} \rightarrow 2 \pi-\delta_{\text {perp }}$ can be removed by applying constiraints to appropriate ranges
د approx. symmetries remain \rightarrow still local minima and since log likelinood fin is non-parabolic not possible to give meaningfil point estimates.

Eb Backup

- $1.9 \mathrm{fif}^{-1}$
- Apply to $\Xi_{b}^{-} \rightarrow \mathrm{J} / 4 j \mathrm{E}^{-}$signal same strategy was applied to $B_{c} \rightarrow J / 4 \psi$ observation
- Reduce bkg and increase vix precision by using Ξ tracked in SVX.
- Use of Etrack, turns 5 track final state (uurpл) into 3 track vertex ($\mu \mathrm{u}$ 트) which is analagous to the state in $\mathrm{B}^{+} \rightarrow \mathrm{J} / 4 \mathrm{j} \mathrm{K}^{+}$

- Optimise cuts to get best $\mathrm{B}^{+} \rightarrow \mathrm{J} / \mathrm{h} \mathrm{K}^{+}$signal

$\mathrm{B}_{\mathrm{s}(\mathrm{d})} \rightarrow \mu^{+} \mu^{-}$Backup

- FCNC decays suppressed in SM, only occur through higher order diagrams
- SM predicts BR~3.8×10-9
- This is >1 order of magnitude smaller than current experimental sensitivity
- Various extensions (eg. MSSM, Minimal Flavour Violating) to SM predict enhancement of 1-3 orders of magnitude to this branching ratio

X(3872) Backup

\lrcorner Does observed $X(3872)$ signal stems from two states?

- Fit the mass signal with a Breit-Wigner function convoluted with a resolution function determined firom simulation.
- Both functions contain widith scale factor that is a free parameter in the fit
د sensitive to the shape of the mass signal.
- Measured width scale factor is compared to values seen in pseudo experiments which assume two states with given mass diffference and ratio of events.
- The resolution in the simulated events is corrected for the dififference between datia and simulation measured for the $\psi(2 s)$
- Results consistent with single mass state

$\Delta \mathrm{m}<3.6 \mathrm{MeV} / \mathrm{c}^{2}$ at $95 \% \mathrm{CL}$

B*0 mesons Backup

$\perp 4$ orbitallly excited $\mathrm{B}^{* * *}$ states:
$\lrcorner J_{1}=1 / 2(J=0,1)$ are B_{0}^{*} and $\mathrm{B}^{*}{ }_{1}$ - not yet observed
」 $J_{1}=3 / 2(J=1,2)$ are B_{1} and B_{2}^{*}

- $\mathrm{J}_{\mathrm{j}}=$ total angular momentum of the light quark (d, u)
- Currently most precise measurement of narrow B ${ }^{* * 0}$ masses

$$
\Gamma\left(\mathrm{B}_{2}{ }^{* 0}\right)=22.7^{+3.8}{ }_{-3.2} \text { (stat.) }{ }^{+3.2}{ }_{-10.2} \text { (syst.) }
$$

