

Latest B-Physics Results from the DØ Experiment

James Walder Lancaster University On behalf of the DØ Collaboration

Outline

- Tevatron
- DØ detector
- Recent results in B-physics for:
 - Lifetime of neutral B-mesons
 - Lifetime of B_c^{\pm} meson
 - Semi-leptonic B_s CP violation asymmetry measurement
 - Discovery of the baryon: Ω_{b}^{\pm} (ssb)
- Summary

12 Nov 2008 – IOP, Lancaster

3.20E+32

2.80E+32

2.40E+32

8.00E+31

4.00E+31

12 Nov 2008 – IOP, Lancaster

PROTON NEUTRINO Collider Run II Peak Luminosity 20E+32 80E+32 Average 00E+32 ŝ .60E+32 .20E+32 8.00E+31 4.00E+31 .00E+00 Peak Luminosity
Peak Lum 20x Average

bss Bayron

TEVATRON

- The Tevatron: ~6 km circumference accelerator
 - Protons and anti-protons accelerated to $\sqrt{s=1.96}$ TeV

B_c Lifetime

Asymmetry

Tevatron

Rate of collisions ~1.7 MHz

B_{s,d} Lifetime

Introduction

- Bunch spacing 396 ns
- Peak luminosity instantaneous $\sim 3 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

Date

3

Relative rate

Summary

MAIN INJECTOR

TARGET HALL ANTIPROTON SOURCE

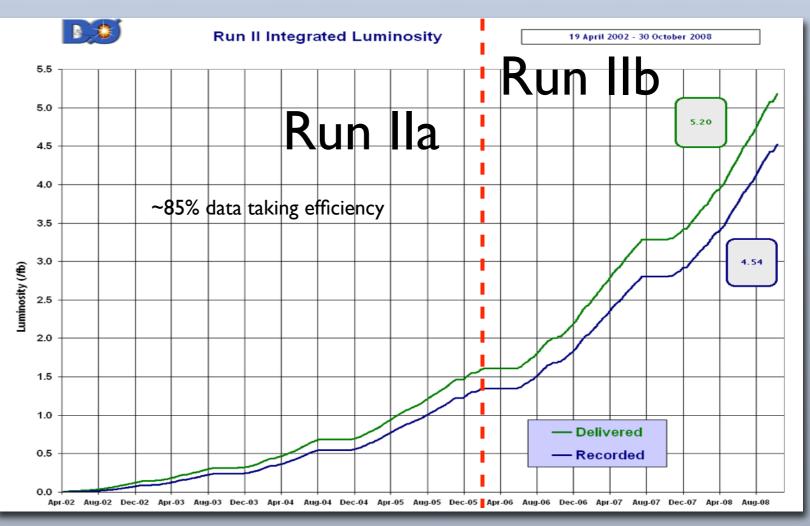
BOOSTER

COCKCROFT-WALTON

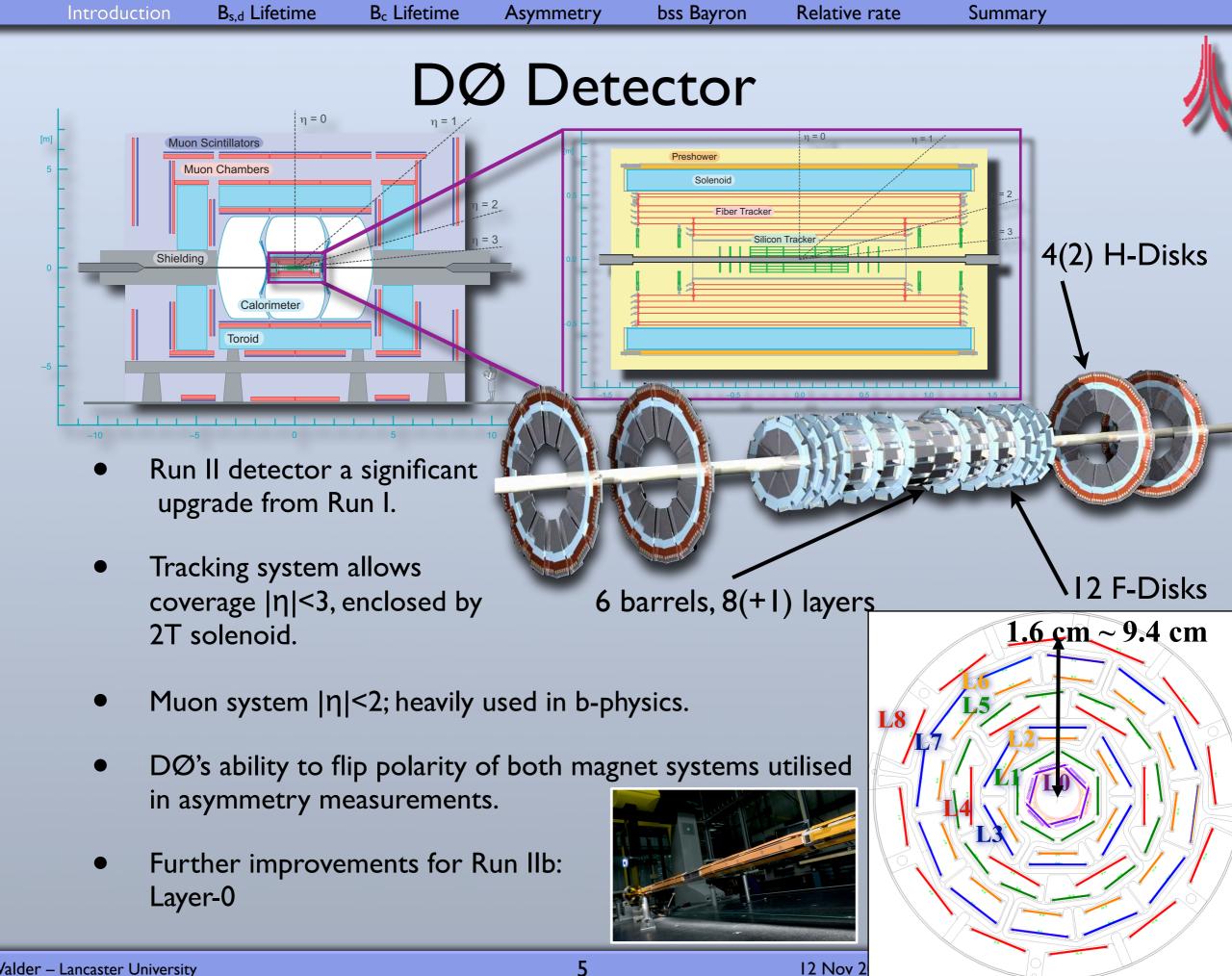
DØ

LINAC

FERMILAB'S ACCELERATOR CHAIN

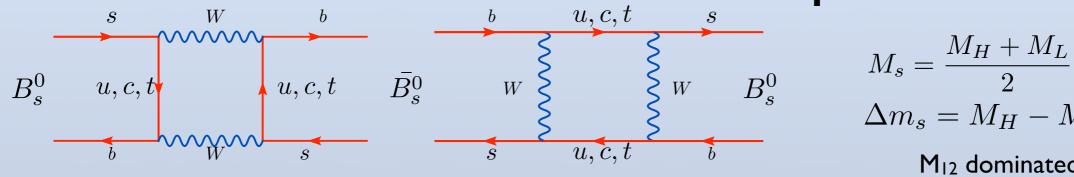

RECYCLER

Summary


人

Tevatron: Current Status

- From Run IIa ~1.3 fb⁻¹ was recorded by DØ for analysis.
- To date:
 - 5.20 fb⁻¹ delivered by Tevatron,
 - 4.54 fb⁻¹ recorded by the DØ detector,
- Projected ~7–8 fb⁻¹ recorded integrated luminosity by end of Tevatron running.
- Results presented
 here based on data
 from Run IIa,
 and Run IIa + Run IIb.



 Γ_s

 $\Delta \Gamma_s$

 $\Delta m_s = M_H - M_L \sim 2|M_{12}|$

Neutral B Meson Properties

$$i\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}B_s^0\\\bar{B}_s^0\end{pmatrix} = \begin{pmatrix}M-\frac{i}{2}\Gamma & M_{12}-\frac{i}{2}\Gamma_{12}\\M_{12}^*-\frac{i}{2}\Gamma_{12}^* & M-\frac{i}{2}\Gamma\end{pmatrix}\begin{pmatrix}B_s^0\\\bar{B}_s^0\end{pmatrix}$$

- Neutral mesons, flavour and mass eigenstates different:
- $|B_H\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle$ $|B_L\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle \qquad p^2 + q^2 = 1$
- If CP is conserved, then $|B_H\rangle = |B^{CP-odd}\rangle$ $|B_L\rangle = |B^{CP-odd}\rangle$
- In SM the CP violating phase is very small: $\phi_s^{SM} = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) \approx 0.04$
- New physics effects may enhance this value. $\phi_s \equiv -2\beta_s + \phi_s^{\Delta}$

M₁₂ dominated by
$$b \rightarrow t\bar{t}s$$

$$\equiv \frac{1}{\bar{\tau}_s} = \frac{\Gamma_L + \Gamma_H}{2}$$

$$= \Gamma_L - \Gamma_H \sim 2|\Gamma_{12}|\cos\phi_s$$
F₁₂ dominated by $b \rightarrow c\bar{c}s$

- Oscillation rate dependent on mass difference: $\Delta m(B_d) = 0.507 \pm 0.05 \text{ ps}^{-1}$ $\Delta m(B_s) = 17.77 \pm 0.12 \text{ps}^{-1} \text{ (PDG)}$
- In Bd system $\Delta\Gamma \sim 0$; Bs $\Delta \Gamma$ s / Γ s ~ O(10%)
- CP-violating effects may be seen in studies relating to the off-diagonal element Γ_{12}

12 Nov 2008 – IOP, Lancaster

Introduction

Lifetime Results from Neutral B-Mesons

Asymmetry

bss Bayron

Relative rate

Summary

• Two recent analyses from DØ:

B_c Lifetime

B_{s.d} Lifetime

- Time-dependent tagged lifetime of $B^0_s o J/\psi \phi$
- Time-dependent untagged relative lifetimes of:
 - $B_s^0 \to J/\psi \phi$
 - $B^0_d \to J/\psi K^{*0}$
- Tagged analysis increases precision, removes sign ambiguity in ϕ_s
- Simultaneous measurement of B_s and B_d is performed to allow direct comparison of angular and lifetime parameters.

7

 Data corresponds to data-taking period 2003—2007, of ~2.8 fb⁻¹ integrated luminosity

Ζ

 θ Transversity

bss Bayron

K-

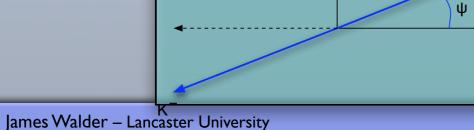
 K^+

- $B^0_s \to J/\psi\phi$
- A 'golden' channel in B-physics analyses:
- Pseudoscaler to Vector Vector decay
- CP-even: Amplitudes A_0 , A_{\perp} CP-odd: Amplitude A_{\parallel}
- Separation of even and odd modes with time-dependent angular analysis of final-state particles,

 μ^{\neg}

х

8


 $rac{}{}^{K^+K^-}$

Decay chain:

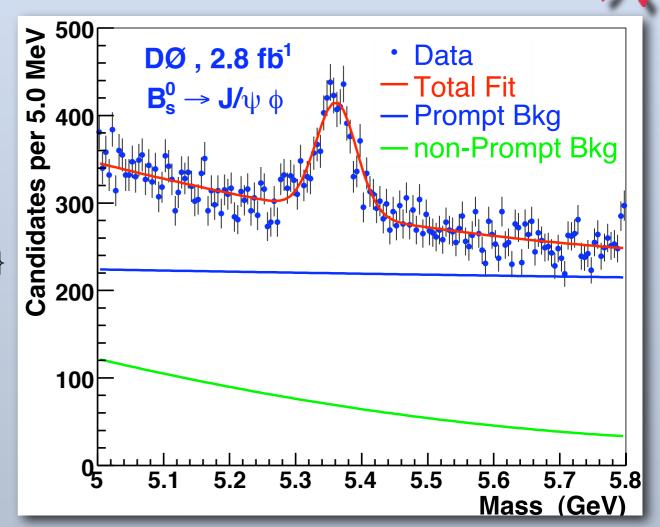
y

12 Nov 2008 – IOP, Lancaster

Introduction B_{s,d} Li

B_{s,d} Lifetime

Summary

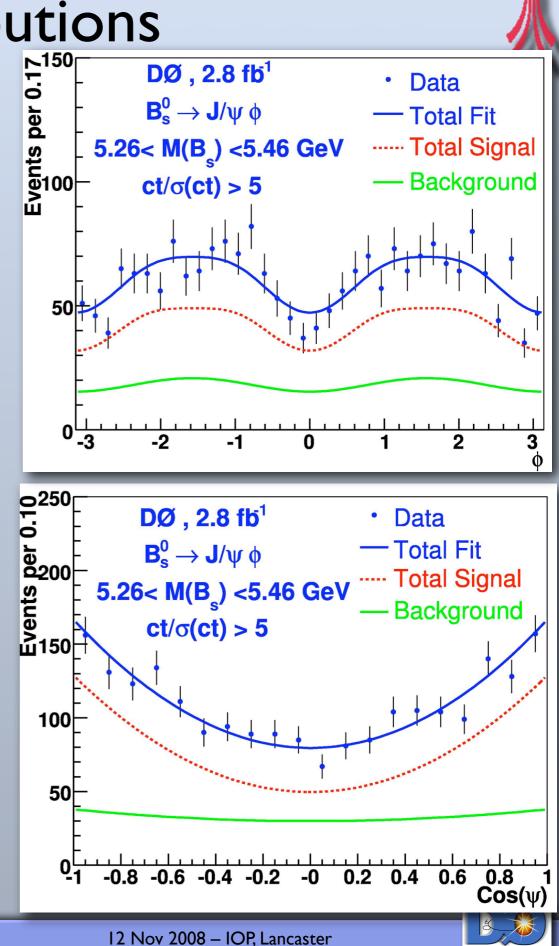

Initial-state Tagging

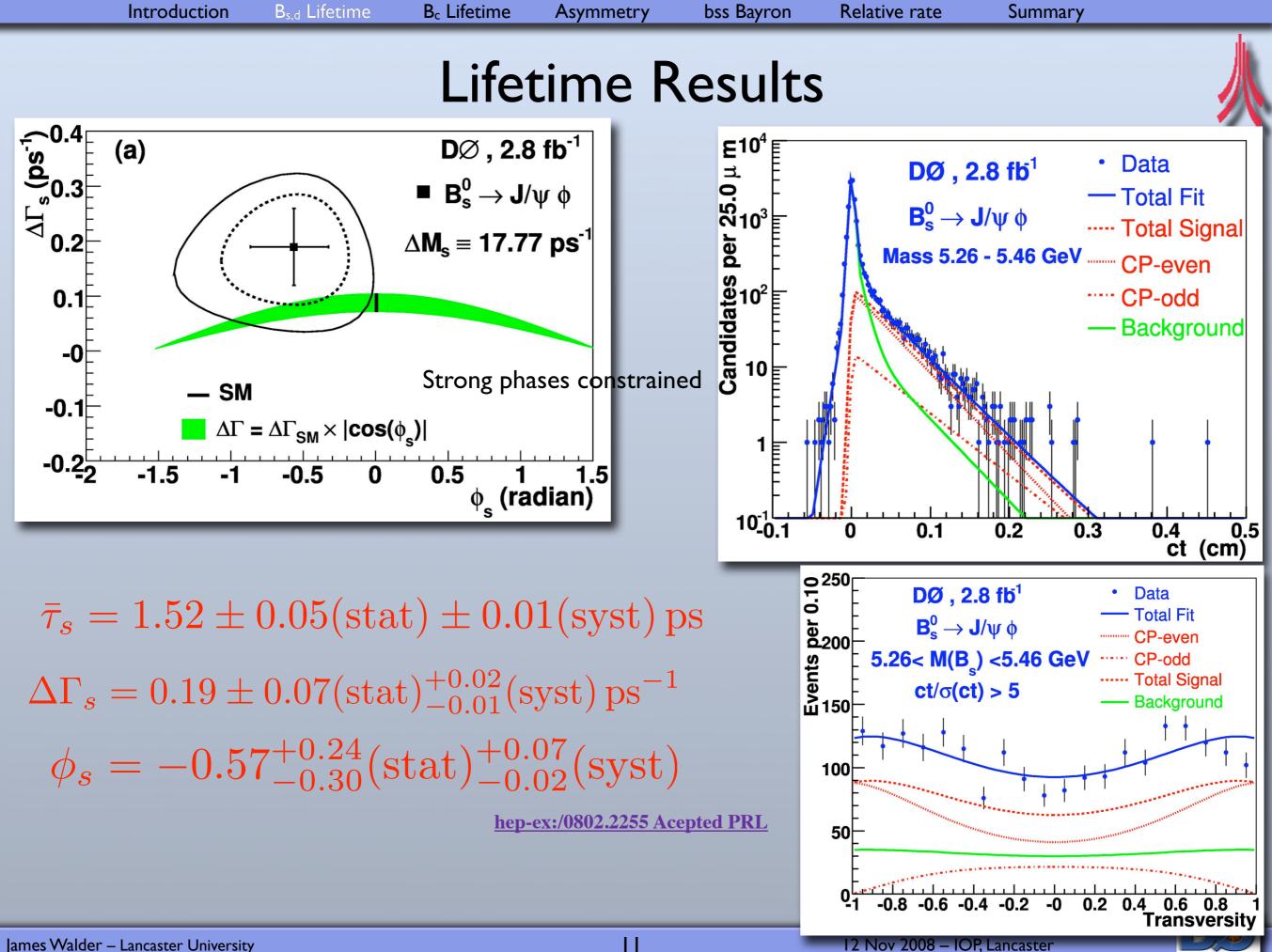
- Initial-state same-side and opposite-side tagging increase precision, removes ambiguity on ϕ_s for given $\Delta\Gamma_s$
- Event charge variables are formed for opposite-side tags: $Q_r = \frac{\sum_i (q \cdot p_\alpha)^k}{\sum_i (p_\alpha)^k} \quad \substack{\alpha = \{T, L\}} \quad r = \{\mu, \text{EV}, \text{SV}, e\}$
 - Same-side tagging uses correlations in b-quark flavour and kaon charge from hadronisation.
 - Combined together in a likelihood ratio method:
 - Tagging power estimated using MC and data comparison.

 $\epsilon \mathcal{D}^2 = (4.68 \pm 0.54)\%$

James Walder – Lancaster University

• 2x improvement from oppsite-side only




$$\epsilon = \frac{N_c + N_w}{N_{\text{Total}}}$$
$$N_c - N_w$$

$$\mathcal{D} = \frac{N_c - N_w}{N_c + N_w}$$

Angular Distributions

- 48k candidate J/ψ , ϕ after selections; ~2000 B_s mesons extracted from fit:
- Unbinned maximum likelihood fit used: m(B_s), proper decay time, and the three angles that characterise the final state.
- Background distributions separated into:
 - Prompt: Directly produced J/ψ with other tracks,
 - Non-prompt: J/ψ from B decay with tracks from had. or multi-body decay of B-hadrons

Simultaneous Measurement of Bd,s Lifetime

bss Bayron

Relative rate

Summary

CP-even: Amplitudes A_0 A_{\perp}

CP-odd: Amplitude A_{\parallel}

Asymmetry

- Simultaneous measurement of B_s and B_d is performed; allows direct comparison of angular and lifetime parameters.
- B_s meson decay using $B_s^0 \to J/\psi \phi$

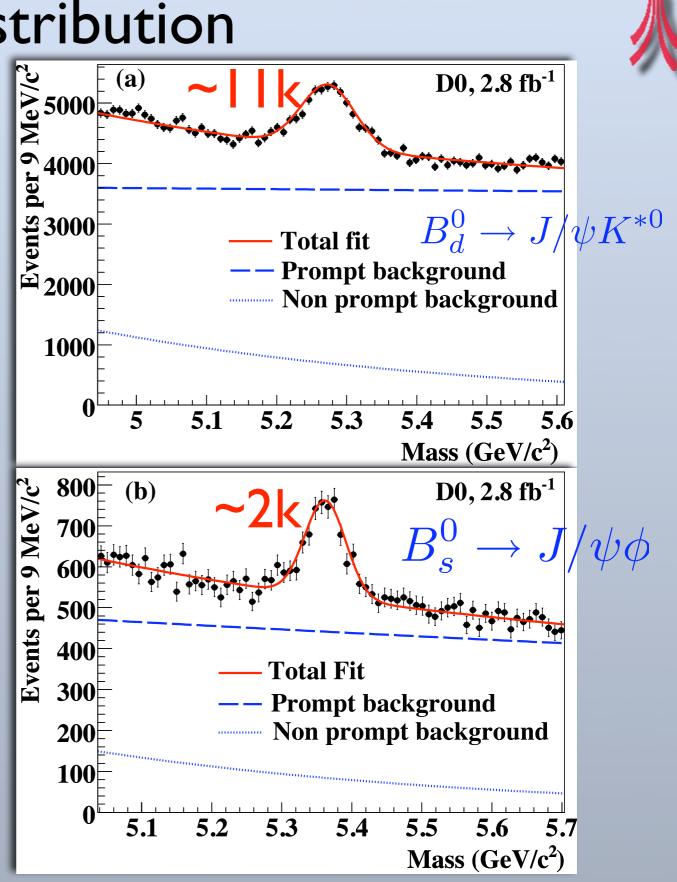
B_c Lifetime

B_{s,d} Lifetime

Introduction

- B_d meson decay $B_d^0 \rightarrow J/\psi K^{*0}$ $K^{*0} \rightarrow K^{\pm} \pi^{\mp}$ $J/\psi \rightarrow \mu^+ \mu^-$
 - Selected for similar final state topology.
- Selection requires two good muons, forming J/ψ . Combine with two oppositely charged tracks (within correct invariant mass window) forming a common vertex.

- CP-conservation assumed in the B_s system.
- CP-conserving strong phases: $\begin{aligned} \delta_1 \equiv \arg[A_{||}^*A_{\perp}] & \delta_2 \equiv \arg[A_0^*A_{\perp}] \\ \delta_0 \equiv \arg[A_0] = 0 \end{aligned}$
- Measured phase $\delta_{||} = \arg[A_0^*A_{||}]$ related by


$$\delta_{||} = \delta_2 - \delta_1$$

Summary

- After selections we find: 334k B_d candidates and 42k B_s candidates.
- A simultaneous unbinned likelihood fit is performed to both samples.
- Background contributions used in the PDF:
 - Prompt component from J/ψ and tracks from hadronisation
 - Non-prompt: J/ψ from B decay, tracks for ϕ meson from hadronisation or multi-body decays of same B meson.
- Plots are projected results of the fit for the invariant mass.

Introduction

etry bss Bayron

n Relative rate

Summary

Results from B_{s,d} Combined Analysis

 Projected results of the fit to the proper decay length distributions plotted

• Fit results:

Parameter	B_d^0	B_s^0	Units
$ A_0 ^2$	0.587 ± 0.011	0.555 ± 0.027	_
$ A_{\parallel} ^2$	0.230 ± 0.013	0.244 ± 0.032	—
δ_1	-0.38 ± 0.06	—	rad
δ_2	3.21 ± 0.06	—	rad
δ_{\parallel}	—	$2.72^{+1.12}_{-0.27}$	rad
au	1.414 ± 0.018	1.487 ± 0.060	\mathbf{ps}
$\Delta\Gamma_s$	_	$0.085^{+0.072}_{-0.078}$	ps^{-1}
N_{sig}	11195 ± 167	1926 ± 62	_

 Systematic uncertainties from: Alignment,
 PDL resolution,
 Mass background distributions,
 Likelihood fitting robustness.

B_{d,s} Lifetime: Results

- Ratio of lifetimes: $\frac{\bar{\tau}_s}{\tau_d} = 1.052 \pm 0.061 (\text{stat}) \pm 0.015 (\text{syst})$
- Width difference in the B_s system: $\Delta\Gamma_s = 0.085^{+0.072}_{-0.078}(\text{stat}) \pm 0.006(\text{syst}) \text{ ps}^{-1}$
- The polarisation amplitudes in the two system are consistent:

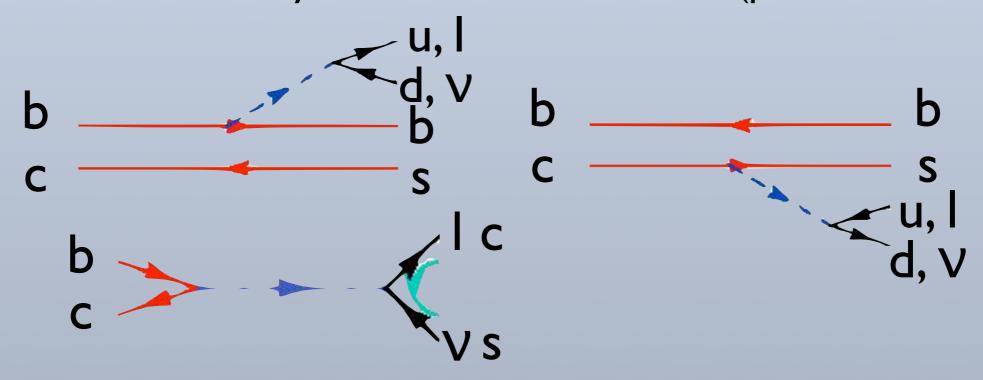
B_d: $|A_0|^2 = 0.587 \pm 0.011 (\text{stat}) \pm 0.013 (\text{syst})$

 $|A_{||}|^2 = 0.230 \pm 0.013(\text{stat}) \pm 0.025(\text{syst})$

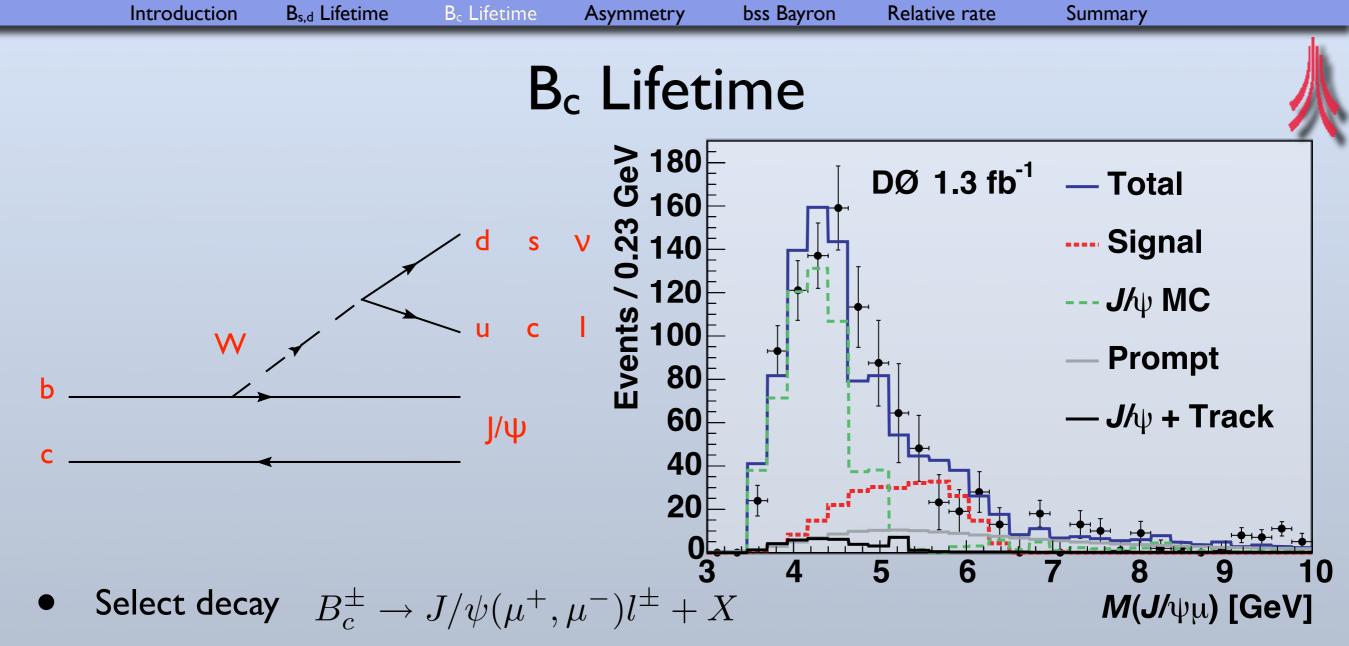
B_s: $|A_0|^2 = 0.555 \pm 0.027(\text{stat}) \pm 0.006(\text{syst})$ $|A_{||}|^2 = 0.244 \pm 0.032(\text{stat}) \pm 0.014(\text{syst})$ Babar: PRD 71, 032005 (2005) $|A_0|^2 = 0.566 \pm 0.012 \pm 0.005,$ $|A_{\parallel}|^2 = 0.204 \pm 0.015 \pm 0.005,$ $|A_{\perp}|^2 = 0.230 \pm 0.015 \pm 0.004,$

BELLE: PRL 95, 091601 (2005)

	B^0	\overline{B}^0
$ A_0 ^2$	0.571 ± 0.015	0.578 ± 0.016
$ A_{ } ^2$	0.216 ± 0.017	0.244 ± 0.018
$ A_{\perp}^{''} ^2$	0.571 ± 0.015 0.216 ± 0.017 0.213 ± 0.017	0.178 ± 0.017


12 Nov 2008 – IOP, Lancaster

hep-ex: 0810.0037 sub. PRL



- B_c differs from $B_{u,d,s}$ due to heavy mass of the c-quark.
- B_c decays via weak decays of b or c quark (other quark spectates), or via annihilation.
 Additional decay modes shorter lifetime (predicted: ~1/3)

 Analysis from Run IIa dataset, corresponding to ~1.3 fb⁻¹ integrated luminosity

- First identify selection of tracks of opposite charge, compatible with a muon, with $2.90 < m(\mu^+, \mu^-) < 3.26 \,\text{GeV/c}^2$
- A third muon is selected and combined with J/ψ in mass window
- Template method used in fitting background contributions. $3 < m(J/\psi, \mu^{\pm}) < 10 \,\text{GeV/c}^2$
- ~I5k events selected.

• B_c signal is observed with significance 6.4 σ .

Introduction

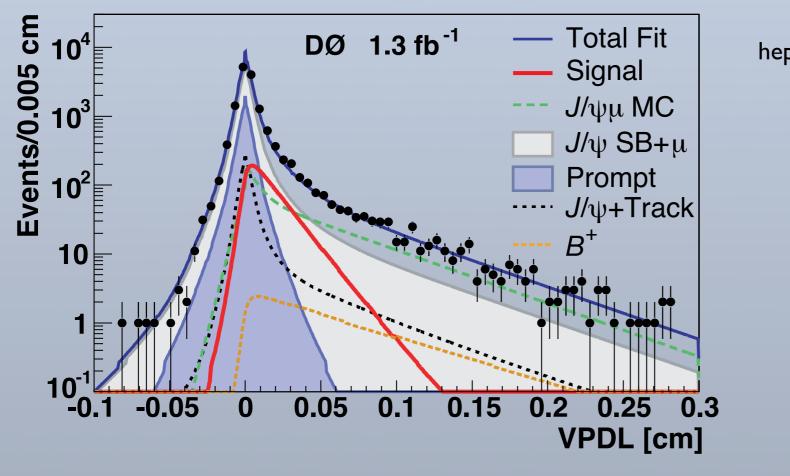
- B_c Lifetime
- Background contributions from 'fake' tracks, non-correlated J/ ψ , μ , $B^{\pm} \rightarrow J/\psi(\mu, \mu)K^{\pm}(\mu^{\pm}\nu)$ and $c\bar{c}$ with prompt J/ ψ production are accounted for using MC and data.
- Lifetime determined using:
 - Displacement of B meson from PV, $\vec{d}_{xy} = \vec{x}_{pv} \vec{x}_{sv}$ • Visible proper decay length (VPDL) $I = \frac{m(J/\psi\mu)}{m(J/\psi\mu)}$ $L_{xy} = \frac{\vec{d}_{xy} \cdot \vec{p}_T}{p_T}$

• Visible proper decay length (VPDL), $L_{xy} \cdot \frac{m(J/\psi\mu)}{p_T(J/\psi\mu)}$ $c\tau(B_r) = L_{rev} \cdot \frac{m(B_c)}{p_T(B_c)}$

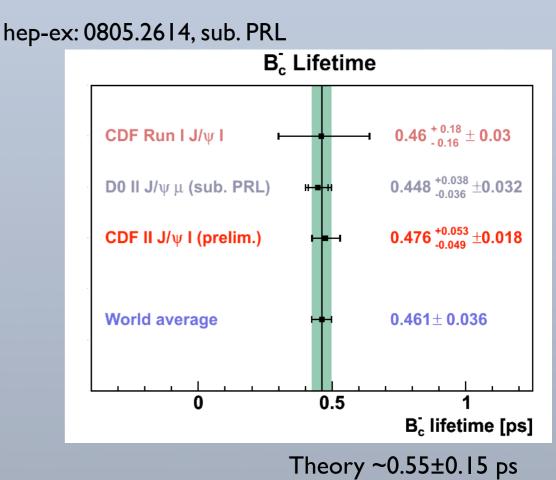
$$c\tau(B_c) = L_{xy} \cdot \frac{m(B_c)}{p_T(B_c)}$$

 Semileptonic decay means p_T(B_c) not fully reconstructed (neutrino).
 From MC, the 'K' factor is determined in 6 bins of M(J/Ψ μ).

$$K = \frac{p_T(J/\psi\mu)}{p_T(B_c)}$$



•
$$c\tau(B_c) = L_{xy} \cdot \frac{m(B_c)}{p_T(J/\psi/mu)} \cdot K$$


$$K = \frac{p_T(J/\psi\mu)}{p_T(B_c)}$$

• Full unbinned simultaneous maximum-likelihood fit to lifetime distribution and mass used to extract lifetime.

$$\tau(B_c^{\pm}) = 0.448^{+0.038}_{-0.036} \,(\text{stat}) \pm 0.032 \,(\text{syst}) \,\text{ps}$$

~880 B_c mesons estimated from fit

Introduction

 $D_s^- \to \phi \pi^-$

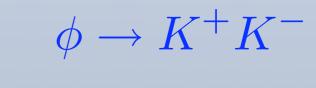
bss Bayron

Searches for CP violation in Bs Decays

Asymmetry

- Search for CP violation in the semi-leptonic decays of B_s-mesons.
- Events selected in the decay: $B_s \to D_s^- \mu^+ \nu X$
- Charge asymmetry measurement: $A_{SL}^{s} \sim \frac{N(\mu^{+}D_{s}^{-}) - N(\mu^{-}D_{s}^{+})}{N(\mu^{+}D_{s}^{-}) + N(\mu^{-}D_{s}^{+})}$

B_c Lifetime


- Final-state B_s flavour determined from muon charge
- Initial-state flavour from opposite-side and same-side tagging techniques
- Time-dependent fit improves on previous untagged time-integrated analysis
- Integrated luminosity 2.8 fb⁻¹.

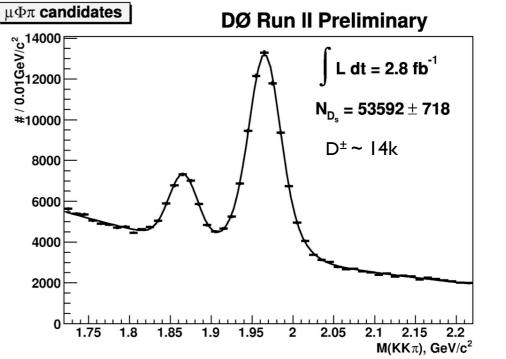
Introduction

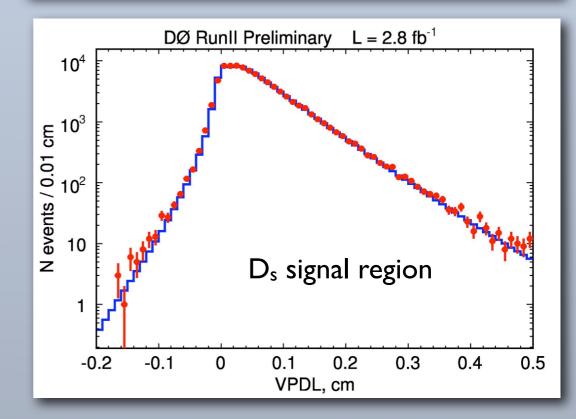
B_{s.d} Lifetime

12 Nov 2008 – IOP, Lancaster

Introduction B

Summary


Searches for CPViolation in Bs Decays


- After selections ~54k D_s candidates are obtained in the fit.
- Must account for asymmetries from sources: detector, range-out, toriodpolarity, sign(muon psuedo-rapidity).

 $p^{q\beta\gamma}(x,K,d_{pr}) = p_{VPDL}(x,K,d_{pr}) \cdot \epsilon^{\beta} (1+q_{\mu}\gamma_{\mu}A_{fb})(1+\gamma_{\mu}A_{det})(1+q_{\mu}\beta\gamma_{\mu}A_{ro})(1+\beta\gamma_{\mu}A_{\beta\gamma})(1+q_{\mu}\beta A_{q\beta}),$

• Proper decay length also requires K-factor

$$c\tau_{B_s} = x \cdot K$$
$$x = \frac{\vec{d}_T^B \cdot \vec{p}_T^{\mu D_s^-}}{(p_T^{\mu D_s^-})^2} \cdot cM_B$$
$$K = \frac{p_T(\mu^+ D_s^-)}{p_T(B_s)}$$

ry bss Bayron

Relative rate

Summary

Semileptonic CP asymmetry: Results

Parameter	RunII, $\int Ldt = 2.8 \text{ fb}^{-1}$	
a_{sl}^s	-0.0024 ± 0.0117	
a^a_{sl}	-0.0787 ± 0.0371	
a_{bg}	-0.0182 ± 0.0271	
A_{fb}	0.0000 ± 0.0021	
A_{det}	0.0001 ± 0.0021	
A_{ro}	-0.0323 ± 0.0021	
$A_{\beta\gamma}$	-0.0005 ± 0.0021	
$A_{q\beta}$	0.0029 ± 0.0021	

• Time-dependant tagged semi-leptonic charge asymmetry measured as:

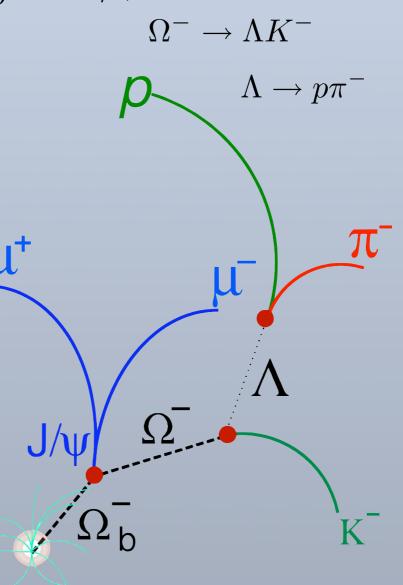
$$a_{sl}^s = -0.0024 \pm 0.0117(\text{stat})^{+0.0015}_{-0.0024}(\text{syst})$$

DØ preliminary result

with 2.8 fb⁻¹ integrated luminosity

- Main sources of systematic uncertainty from efficiency curve estimation and cc background contribution to the sample.
- Previous result: PRL 98, 151801 (2007) :

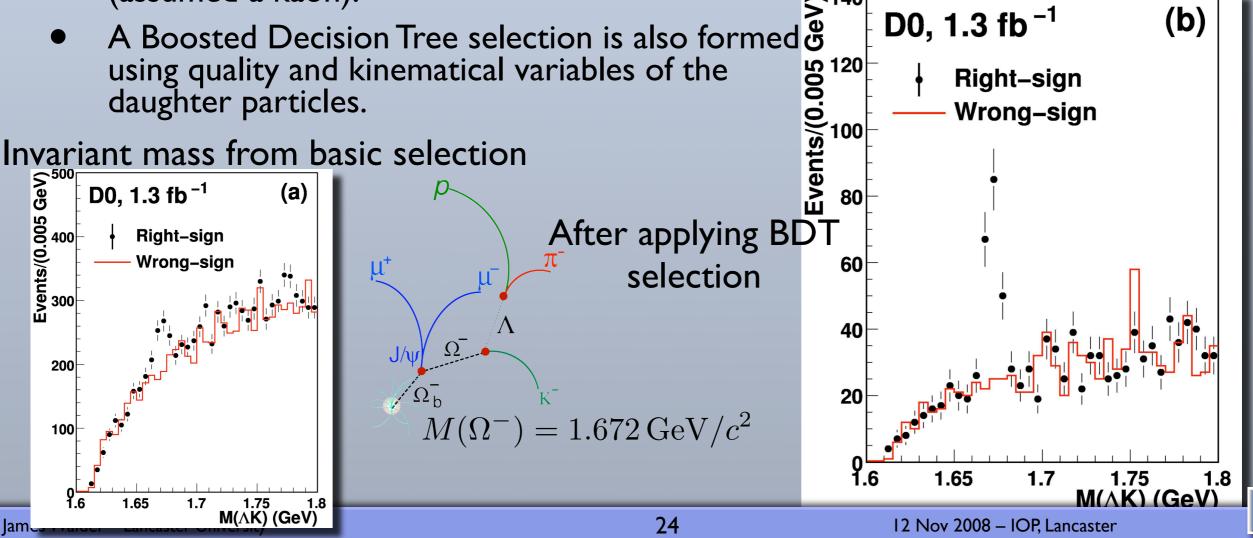
 $\frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s = 0.0245 \pm 0.0193 \text{(stat)} \pm 0.0035 \text{(syst)}$

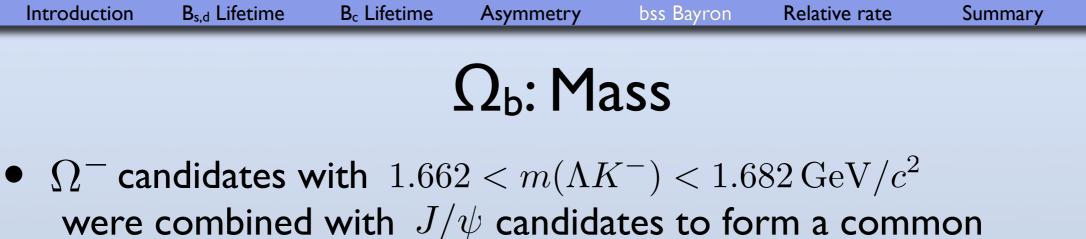

• Most precise direct measurement to date.

人

- Doubly-Strange Baryon: Ω_{b}
- DØ reported first observation of $\,\Omega_b\,(bss)\,$ baryon.
- Analysis made using Run IIa (~I.3 fb^{-I}) dataset.
- Fully reconstructed decay: $\Omega_b^- \to J/\psi \Omega^-$ (similar to Ξ_b^- analysis) $\Omega^- \to \Lambda K^-$

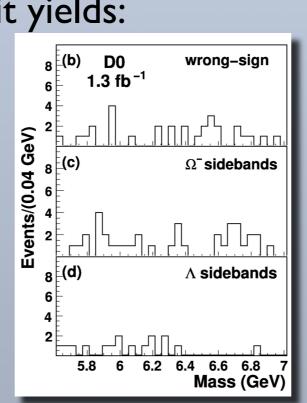
 Long-lived decay chain, requires extended tracking

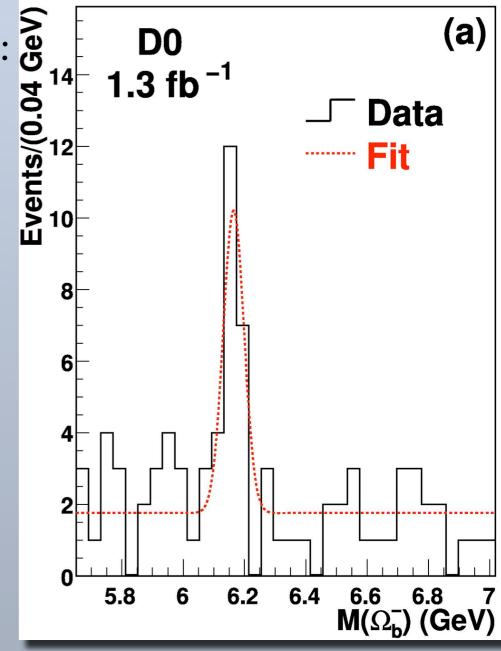



12 Nov 2008 – IOP, Lancaster

人

- Ω_b : Selection
- As usual, a J/ ψ candidate is required from two good, oppositely charged muons.
- Events passing this selection are re-reconstructed using the extended version of our tracking algorithm; provides increased efficiency in reconstructing low-p_T, high impact parameter tracks.
- $\Lambda \rightarrow p\pi^-$ is constructed from two tracks $p_T > 0.2 \,\mathrm{GeV}/c$ $1.108 < m(p\pi^-) < 1.126 \,\mathrm{GeV}/c^2$
- The Ω^- candidate is formed from Λ and a track forming a common vertex (assumed a kaon).


vertex.


• Mass resolution is improved using variable: $M(\Omega_b^-) = m(J/\psi\Omega^-) + [\hat{M}(J/\psi) - m(\mu^+\mu^-)] + [\hat{M}(\Omega^-) - m(\Lambda K^-)]$

• From 79 candidates fit yields:

 17.8 ± 4.9 (stat) signal events.

• Wrong-sign (ΛK^+) sample shows no excess

Ω_b : Observation

- A 5.4σ statistical significance is observed; Probability of 6.7 x 10⁻⁸ of background fluctuation to signal level (or greater).
- Systematic uncertainties obtained through varying event selection criteria, signal and background models, and momentum scale.
- $M(\Omega_b^-) = 6.165 \pm 0.010 \,(\text{stat}) \pm 0.013 \,(\text{syst}) \,\text{GeV}/c^2$

hep-ex: 0808.4142, accepted PRL

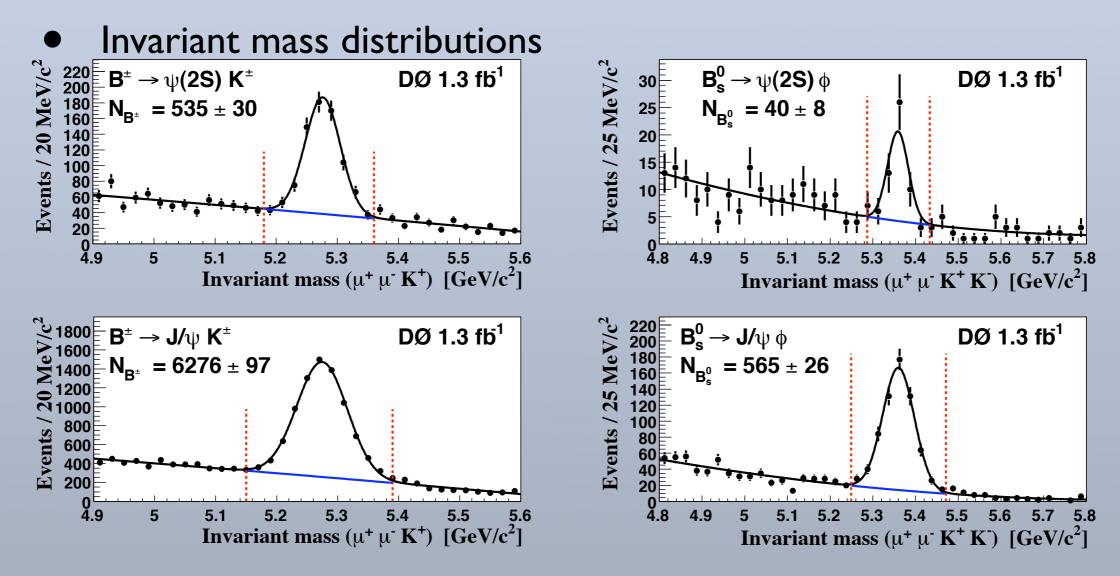
12 Nov 2008 – IOP, Lancaster

• Using the results from recent Ξ_b^- observation $\mathcal{R} = \frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} \cdot \frac{\mathcal{B}(\Omega_b^- \to J/\psi\Omega^-)}{\mathcal{B}(\Xi_b^- \to J/\psi\Xi^-)}$ $= 0.80 \pm 0.32(\text{stat})^{+0.14}_{-0.22}(\text{syst})$ • Allows an estimate to be made of: $\frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} \approx 0.07 - 0.14$

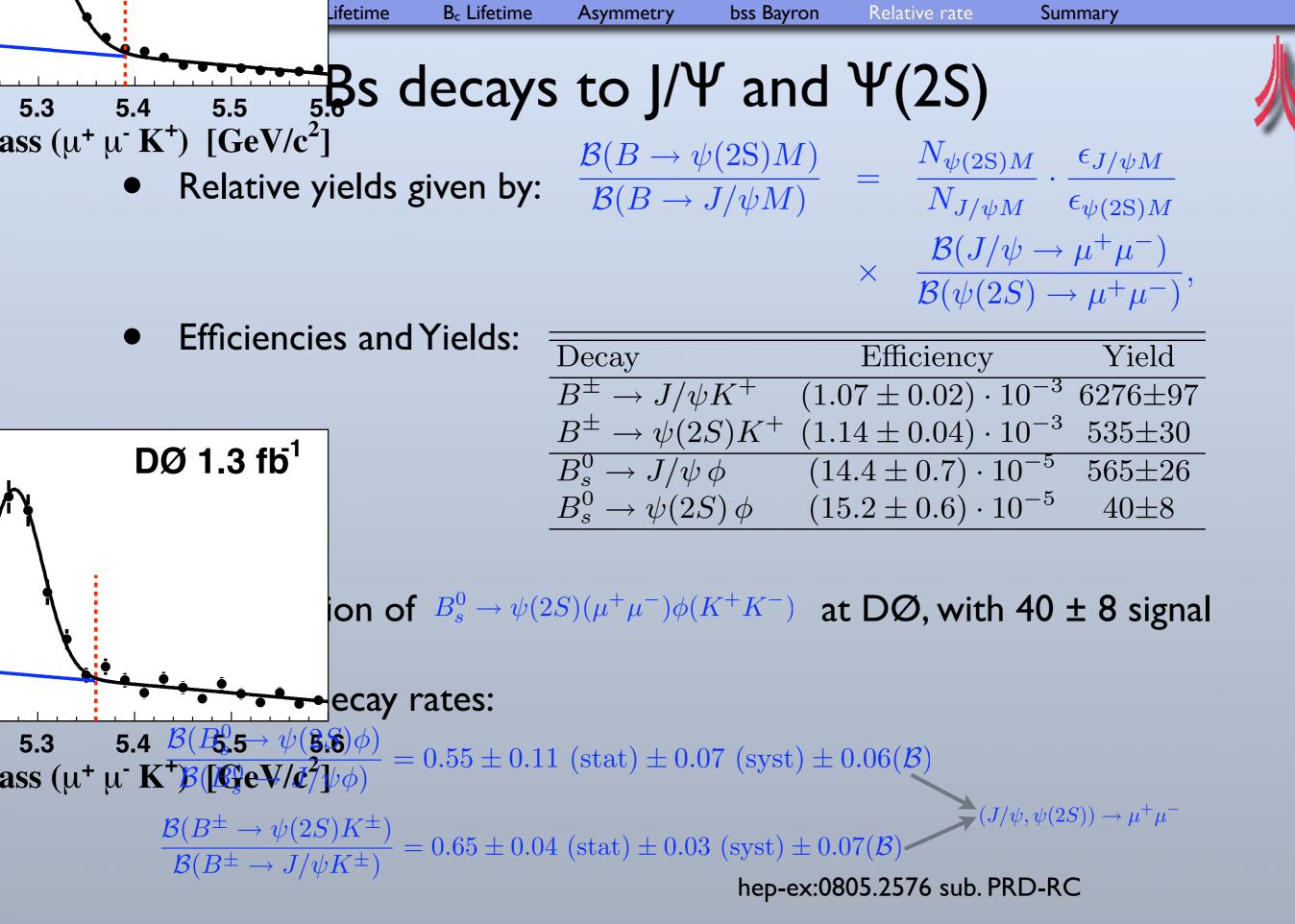
人

B_s decays to J/ Ψ and Ψ (2S)

- Main search for CP violation through Bs decays use the decay $B_s^0 \to J/\psi \phi$,
- Results are currently statistically limited; so establishing new decay channels gives possibility for increased precision. $B_s^0 \rightarrow \psi(2S)\phi \qquad B^{\pm} \rightarrow J/\psi K^{\pm}$
- Select the decays $B_s^0 \to J/\psi\phi$ $B^{\pm} \to \psi(2S)K^{\pm}$


where, $J/\psi \to \mu^+ \mu^- \ \psi(2S) \to \mu^+ \mu^-$, $\phi \to K^+ K^-$

- Analysis dataset based on 1.3 fb⁻¹ integrated luminosity.
- Only events passing the di-muon trigger considered.



人

- Invariant Mass
- Two muons combined to form J/Ψ, Ψ(2S) and momenta corrected using mass constrained fit.
- ϕ constructed from two kaons with $1.008 < m(K^+K^-) < 1.032 \text{ GeV}/c^2$
- Discriminate from prompt decays with IP significance cuts

Summary

- Brief summary of recent DØ B-physics results; complements and competes with B-factories.
- First direct observation (>5 σ) of $\Omega_b^-(bss)$ bayron.

 $M(\Omega_b^-) = 6.165 \pm 0.010 \,(\text{stat}) \pm 0.013 \,(\text{syst}) \,\text{GeV}/c^2$

• Tagged analysis in B_s system yield CP violating phase:

 $\phi_s = -0.57^{+0.24}_{-0.30} (\text{stat})^{+0.07}_{-0.02} (\text{syst})$

• Lifetime measurements made on simultaneous $B^{0}_{\{d,s\}}$, and in B^{\pm}_{c} mesons. $\tau(B^{0}_{d}) = 1.414 \pm 0.0178 \text{ (stat) ps}$ $\tau(B^{0}_{s}) = 1.487 \pm 0.060 \text{ (stat) ps}$

 $\begin{aligned} \tau(B_c^{\pm}) &= 0.448^{+0.038}_{-0.036} \,(\text{stat}) \pm 0.032 \,(\text{syst}) \,\text{ps} \\ \bullet \quad \text{Relatives decay rates measured in} \quad \begin{array}{l} \pm 0.032 \,(\text{syst}) \,\text{ps} \\ B_s^0 \to J/\psi \phi \quad B_s^0 \to \psi(2S)\phi \\ \hline \mathcal{B}(B_s^0 \to J/\psi \phi) &= 0.55 \pm 0.11 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \pm 0.06(\mathcal{B}) \\ \end{array} \quad \begin{array}{l} \frac{\mathcal{B}(B^{\pm} \to \psi(2S)K^{\pm})}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} &= 0.65 \pm 0.04 \,(\text{stat}) \pm 0.03 \,(\text{syst}) \pm 0.07(\mathcal{B}) \\ \end{array} \end{aligned}$

- No significant deviation from SM processes observed.
- Many analyses to be forthcoming with increased datasets, using Run IIb data.
- Most results statistics limited DØ will improve as more data collected.

