

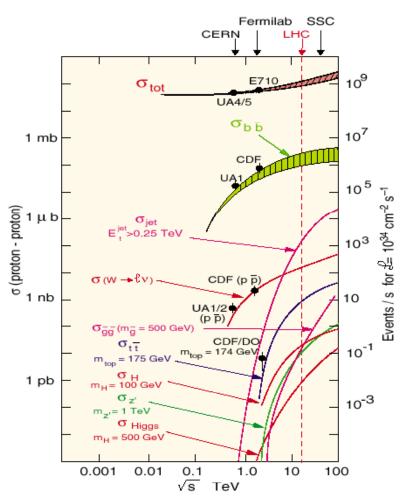
B-triggers at ATLAS

Julie Kirk

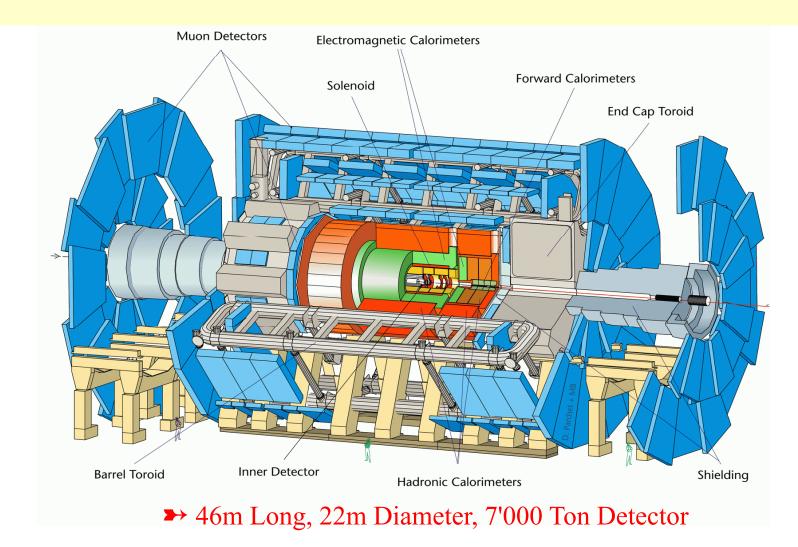
Rutherford Appleton Laboratory

Introduction

- B physics at LHC
- ATLAS and the ATLAS trigger

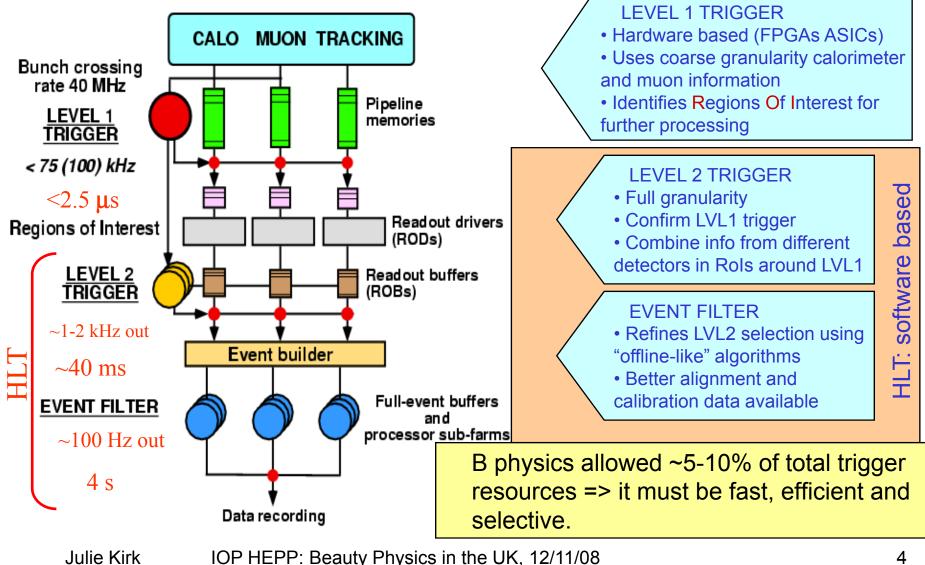

• B triggers:

- B-trigger strategy
- Muon triggers
- Examples of specific B triggers
- Menu evolution
- Efficiency studies
- Commissioning


• Summary

B physics at LHC

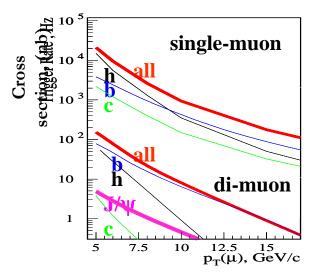
- LHC: proton-proton collisions at √s = 14TeV bunch crossing rate 40kHz
- High *bb* production cross section: ~500 µb (~ 1 in 100 p-p collisions → *bb* pair). Must select those of interest.
- ATLAS has a wide ranging B-physics programme covering SM and NEW physics:
 - QCD tests (beauty and onia production)
 - CP violation (e.g. $B \rightarrow J/\psi(X)$)
 - B_s oscillations (e.g. $B_s \rightarrow D_s \pi$, $B_s \rightarrow D_s a_1$)
 - Rare decays (e.g. $B \rightarrow \mu\mu$, $B \rightarrow \mu\mu(X)$, $B \rightarrow K^*\gamma$)



ATLAS detector

Julie Kirk IOP HEPP: Beauty Physics in the UK, 12/11/08

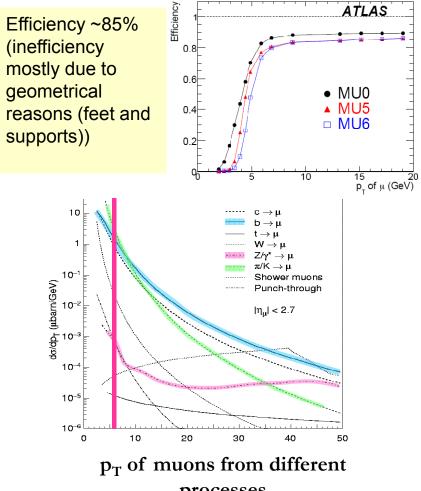
Overview of ATLAS trigger


B trigger strategies

- Limited bandwidth for B-triggers (ATLAS emphasis on high-p_T physics) need to be fast, efficient and selective.
- B-trigger is based on single and di-muons
 - BR ~ 10 % but clean signature at early level in trigger and give flavour tag (needed in many analyses)

Different strategies in different luminosity regimes :

• <u>High lumi (>~2x10³³ cm⁻²s⁻¹)</u> Need to control the rate, use LVL1 di-muon trigger


• <u>Lower lumi (<~ 2x10³³ cm⁻²s⁻¹)</u> Can use single LVL1 muon trigger in addition.

B trigger strategies

- <u>High lumi (>~2x10³³ cm⁻²s⁻¹)</u>
 - LVL1 di-muon trigger
 - events with 2 muons:
 - rare decays (B \rightarrow µµ(X)), B \rightarrow J/ ψ (µµ) X
- Lower lumi (<~ 2x10³³ cm⁻²s⁻¹)
 - Use single LVL1 muon trigger plus JET/EM signatures at LVL1.
 - Two approaches
 - Full reconstruction in Inner Detector
 - Reconstruction in a Region of Interest (RoI) identified by the LVL1 JET,EM or Muon signature.
 - Possible channels:
 - Jet RoI: hadronic final states, e.g. $B_s \rightarrow D_s(\phi \pi) \pi$
 - EM RoI: em final states such as $J/\psi \rightarrow ee$, $K^*\gamma$, $\varphi\gamma$
 - Muon Rol recover di-muon events where second (low $\textbf{p}_{T})$ muon was missed at LVL1

LVL1 muon trigger

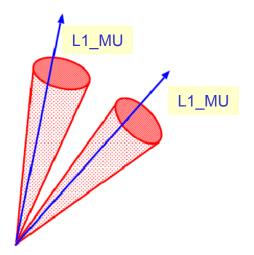
Predict LVL1 rate from convolution of efficiency with predicted cross-section as a function of $p_{\rm T}$

Rate ~ 21-30kHz (p_T >6GeV) (large uncertainty due to changing PYTHIA cross-sections)

>15% due to b events

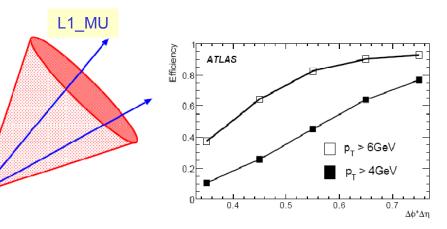
Main background from π/K

Reduce rate at LVL2 by:


- use precision muon chambers
- extrapolate and match to inner detector tracks

Julie Kirk ^{processes} IOP HEPP: Beauty Physics in the UK, 12/11/08

Di-muon trigger - two approaches


Topological trigger

- 2 LVL1 muons
- Confirm at HLT (muons + InnerDetector)
- Make mass, vertex cuts

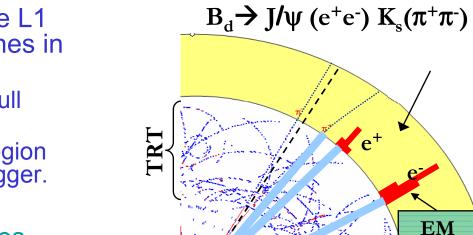
Single muon LVL1 trigger

- One LVL1 muon
- Confirm at HLT (muons + InnerDetector)
- In large Rol OR entire detector search for the second muon
- Make mass, vertex cuts

Used for $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$, $B \rightarrow \mu\mu(X)$

Julie Kirk IOP HEPP: Beauty Physics in the UK, 12/11/08

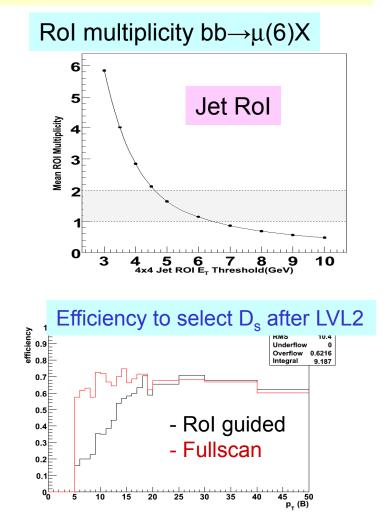
Comparison of the two approaches for $J/\psi{\rightarrow}\mu\mu$


Dataset with $J/\psi \rightarrow \mu(p_T > 4 GeV)\mu(p_T > 2.5 GeV)$

Threshold	Chain starting	Single L1 muon			Topological trigger	
(GeV)	from	from J/ψ ε Total rate		•	J/ψ ε	Total rate
			(Hz)			(Hz)
4 (L=10 ³¹)	Level - 1	73%	3.5			
	Level - 2	70%	2.7		33%	0.6
6 (L=10 ³³)	Level - 1	75%	180.5			
	Level - 2	60%	126		15%	9.3
$\uparrow \qquad \uparrow$						
Single L1 muon trigger is more efficient but the rate becomes too high at higher luminosities		Seeded by single L1 muon			Seeded by L1 di-muon	

Full reconstruction versus Rol-guided approach?

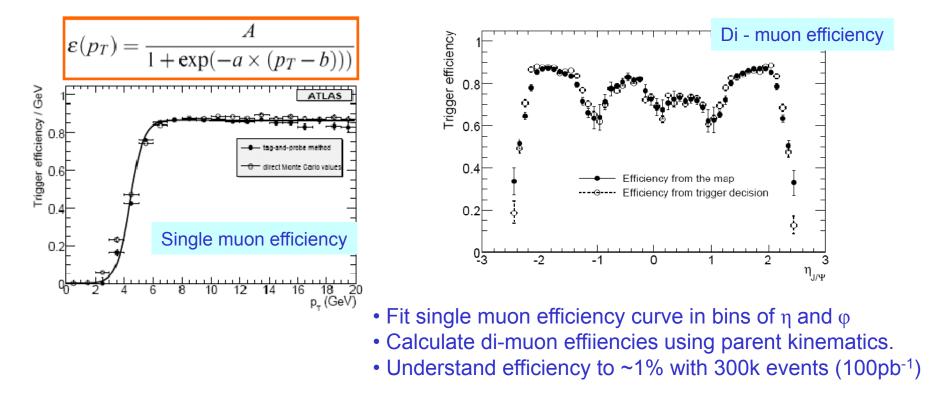
- For the triggers using a single L1 muon there are two approaches in the HLT:
 - Track reconstruction in the full Inner Detector (FullScan)
 - Track reconstruction in a Region around the secondary L1 trigger.
- Rol- guided approach retrieves information for smaller region of detector => faster execution times
- Speed depends on Rol size and mean LVL1 Rol multiplicity per event


Example of Rol approach: Track reconstruction is performed in a region around the L1 EM Rol

RoI

Hadronic and EM B decays Full reconstruction or Rol guided?

- Rol multiplicity required to be about 1-2 to keep resource needs reasonable => determines thresholds chosen
- Higher threshold → less Rols → lower rate and less resources used but reduced efficiency
- At startup use the FullScan but as luminosity increases move to Rolguided approach – reduces rate and resources needed.



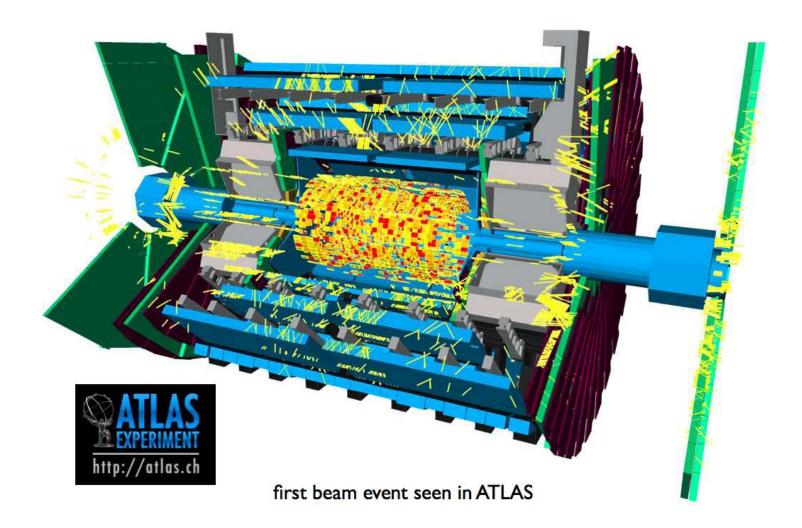
Evolution of trigger menus

	Example signal	Startup 10 ³¹	10 ³² -10 ³³	Above ~ 2x10 ³³
Topological trigger	Onia(J/ψ→μμ, Ƴ→μμ) Β→μμ(X)	2MU4	2MU4	2MU6
Di-muons from single L1 muon	As above (lower threshold for second muon)	MU4 FullScan	MU6 Rol	X
Jet and EM final states	B _s →D _s (φπ)π J/ψ→ee, K*γ, φγ	MU4 FullScan	MU6 Rol	X

Extracting di-muon efficiencies from data

- Use tag-and-probe method :
 - Collect events with single muon trigger
 - Reconstruct J/ $\psi \rightarrow \mu\mu$ offline. One muon was "trigger" muon
 - The other muon gives an un-biased sample to study trigger efficiency

Commissioning First Commissioning of muon and tracking Muon tracks Beam: triggers with first beams and cosmics is vs eta 21 ongoing. Await collisions to commission the B 0.5 physics trigger algorithms. Beam coming from z<0 Barrel Endcaps L2 phi vs eta cosmic eta vs 12 cosmic Cosmics: Entries 0.03921 Mean x Mean y -LVL2 tracks RMS x 1.226 RMS y 1.685 **EF** tracks -2 -3 -2 LVL2 tracks -3 **EF** tracks -4 4 -3 -4<u></u>⊞ 3 -2 3 m -1 MuonEF


IOP HEPP: Beauty Physics in the UK, 12/11/08 Julie Kirk

491

0.33

Summary

- ATLAS plans a full B physics programme from startup to full luminosity.
- Presented a flexible B trigger with the ability to cope with increasing luminosity (FullScan → Rol guided track reconstruction, eventually running only di-muon trigger at design luminosity)
- This will allow a broad programme of B-physics during early running and rare decay searches continue at high luminosity.
- Look forward to first collision data......

