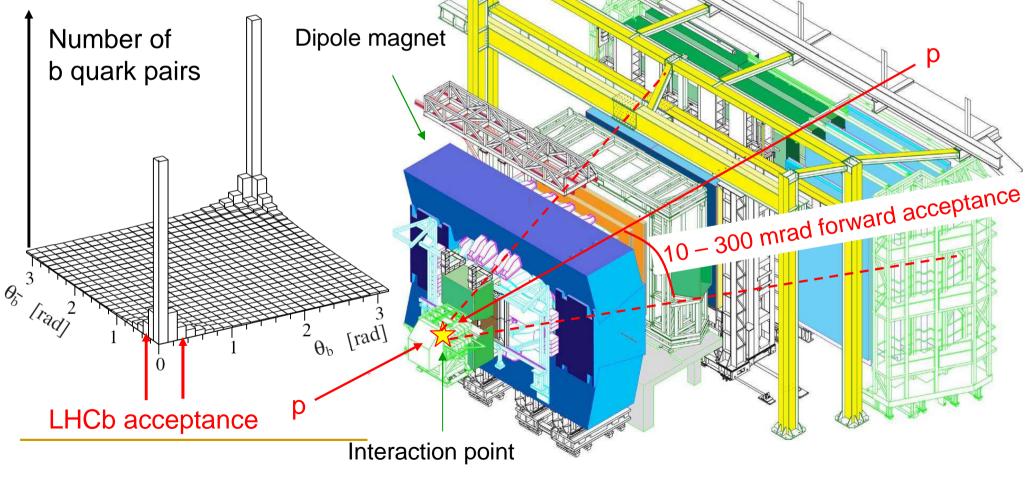
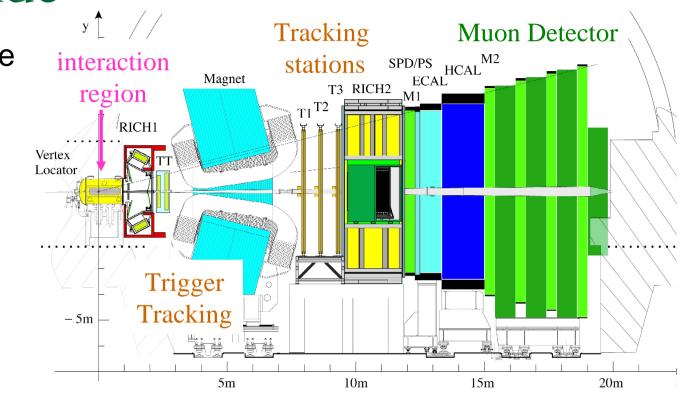
CP violation measurements at LHCb

Jim Libby (University of Oxford)


Outline

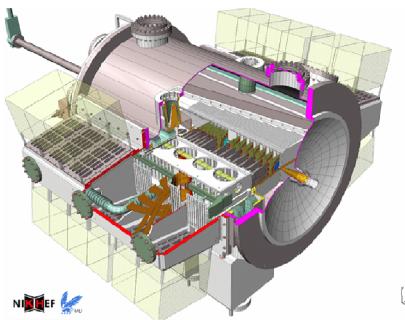
- Overview of LHCb
- CPV highlights:
 - \square β_s measured with $B_s \rightarrow J/\psi \phi$
 - \square γ measurements:
 - Purely tree level and loop influenced decays
 - CPV in charm decays
- Other CPV measurements
- Conclusion

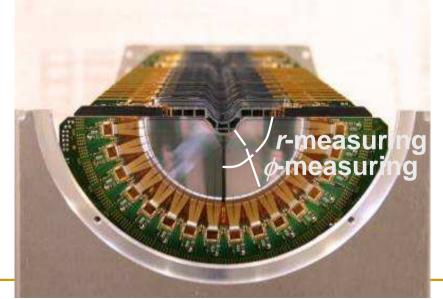
LHCb overview


The LHCb Experiment

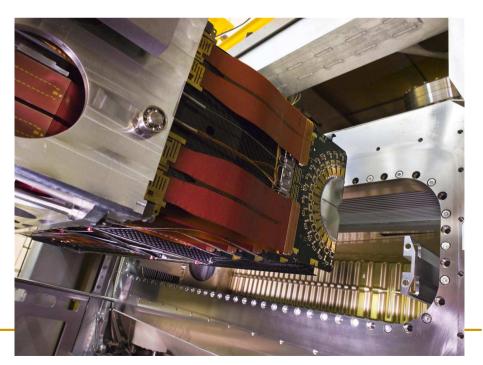
- Dedicated experiment for precision measurement of CP violation and rare decays of b-hadrons at the LHC
 - Indirect searches for non-Standard Model physics
- □ Collider-mode operation at same time as the general-purpose detectors, with less-focused beams \rightarrow most events have a single pp interaction

LHCb in a slide

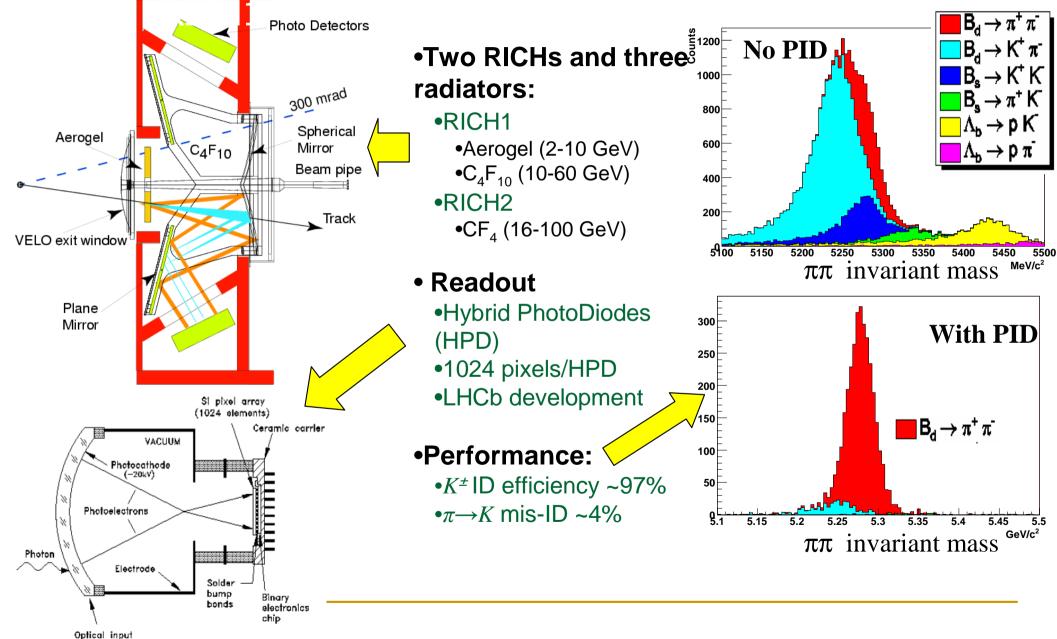

- *pp* collisions at a centre of mass energy of 14 TeV
 10¹² *bb*/year
- Ring Imaging Cherenkov detectors
 - hadron ID for momentum from 2 to 100 GeV/c



- First level hardware trigger rate from $40 \rightarrow 1$ MHz
- Software Higher Level Trigger (HLT):


inclusive and exclusive selections to reduce storage rate to 2 kHz

Si Vertex Locator (VELO) [Glasgow-Liverpool]



- 21 stations of Si wafer pairs with r and ϕ strip readout
- Most accurate detector at LHC
 - <10 μm precision
 - 40 fs proper time resolution
- Split in two halves to allow retraction from beam line
 - When closed 8 mm from beam

RICH [Bristol-Cambridge-Edinburgh-Glasgow-IC-Oxford-RAL]

IOPP HEP: Beauty physics in the UK

window

Trigger

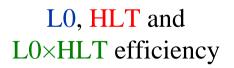
Full bandwidth for flavour

Hardware trigger (L0)

- > Fully synchronized (40 MHz), 4 μ s fixed latency
- > High p_T particles: μ , $\mu\mu$, e, γ and hadron
 - > typically p_T thresholds 1 to 4 GeV/c

1 MHz readout of all detector components

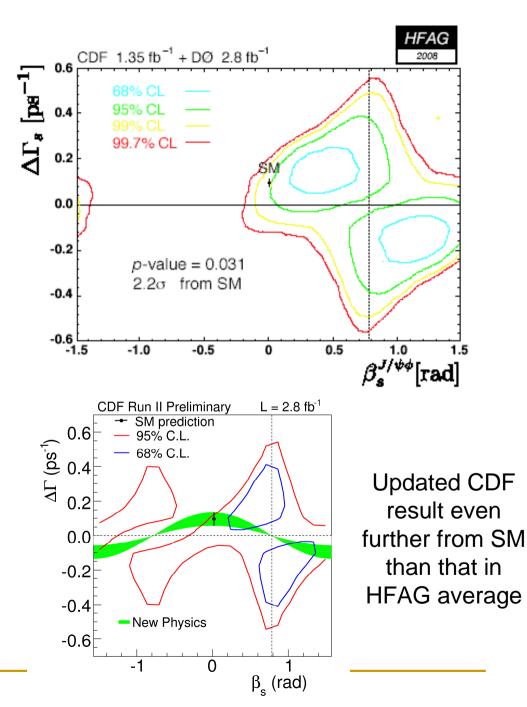
Software trigger on 1000 multicore-CPU farm


- Full detector info available, only limit is CPU time
- Use more tracking info to re-confirm L0+high IP
- Full event reconstruction: exclusive and inclusive streams tuned for specific final states

\leq 2 kHz storage

Storage

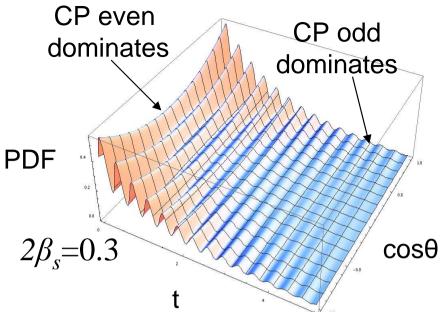
Event size ~ 35 kB

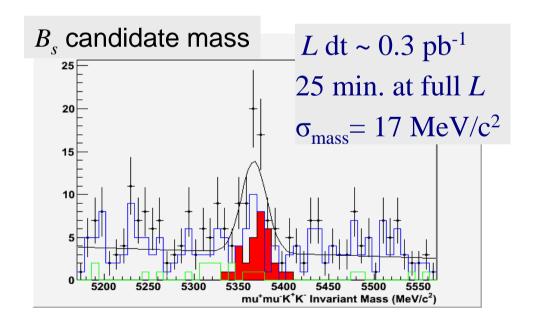

Efficiency
$$Z$$

0 2 4 3 8 8
ππ
 $Kπ$
 $Kπ$
 KK
 D_{K}
 $D^{T}π$
 DK^{*}
 $\eta_{c}\varphi$
 $\varphi\varphi$
 $J/\psi(\mu\mu)K_{s}$
 $J/\psi(\mu\mu)K_{s}$
 $J/\psi(\mu\mu)(\pi)$
 $J/\psi(\mu\mu)(\pi)$
 $J/\psi(\mu\mu)(\pi)$
 $J/\psi(ee)K_{s}$
 $\pi\pi\pi^{0}$
 $K^{*}\gamma$

B_s mixing phase (for more information see G. Lanfranchi's talk at CKM2008: <u>http://ckm2008.roma1.infn.it</u>)

B_s mixing phase


- Predicted to be small in the SM
 - □ $-2\beta_s = (0.36 \pm 0.02)$ rad
 - CKMFitter Summer 2008
- However, indications that it is significantly larger from CDF and D0
- One of the principal goals of LHCb is a precise determination of this parameter



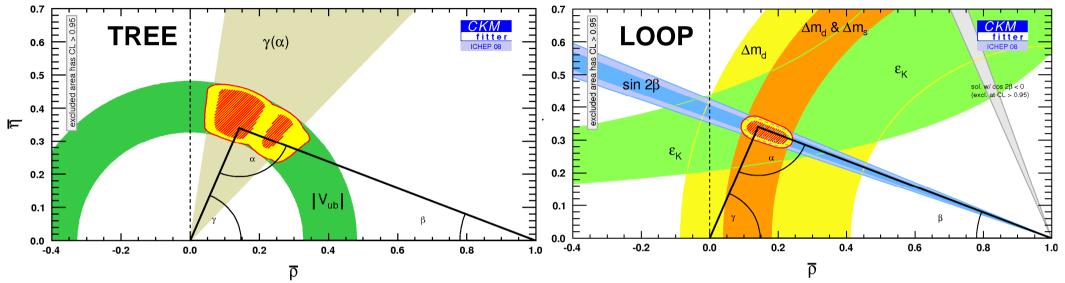
Measuring β_s at LHCb

- $P \rightarrow VV$ decay $B_s \rightarrow J/\psi \phi$ is the golden mode for β_s
 - Time-dependent angular analysis required
 - Large signal yield in one nominal year (2 fb⁻¹) of 110k events with B/S ~ 2
 - Excellent proper-time and mass resolution
 - Tagging improved with RICH K PID

Tag	$Q = \epsilon (1-2\omega)^2$
μ	0.75 ± 0.05
е	0.45 ± 0.04
K opp. side	1.49 ± 0.07
K same side	2.13 ± 0.09
Vertex charge	1.14 ± 0.07
Combined	6.18 ± 0.14

New physics sensitivity with β_s

- Standalone simulations to estimate sensitivity based on results from GEANT4 simulation
 - 6 observables: proper time, 3 angles, tag and mass
 - 8 physics parameters: $2\beta_s$, $\Delta\Gamma_s$, Γ_s , two helicity amplitudes (R_0 and R_\perp) and two strong phases (δ_0 and δ_\perp)
 - and experimental parameters (resolution, acceptance and tagging)
- 200 toy experiments corresponding to 1 year of data (2 fb⁻¹)

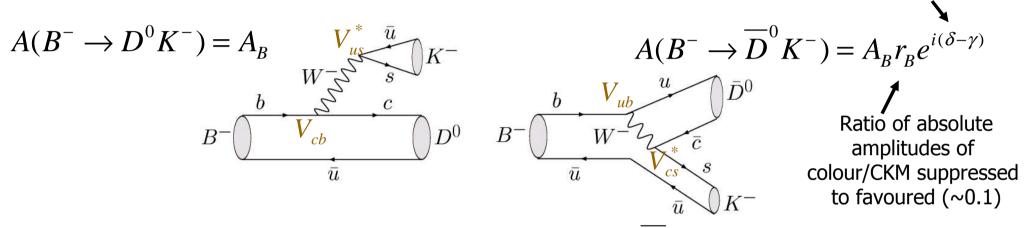

Parameter	Input	Sensitivity	
ΔΓ _s	0.084 ps ⁻¹	0.008 ps ⁻¹	
Γ _s	0.696 ps⁻¹	0.003 ps ⁻¹	
R ₀	0.56	0.004	
R⊥	0.233	0.005	
δ_0	-2.93 rad	0.07 rad	
δ_{\perp}	2.91 rad	0.10 rad	
2 β _s	0.0368 rad	0.03 rad	

Potential to observe non-SM

value within 1 year

Determination of γ (for more information see A. Carbone, A. Powell, G. Guerrer, E. Rodrigues and G. Wilkinson at CKM2008)

Motivation for precision tree level γ



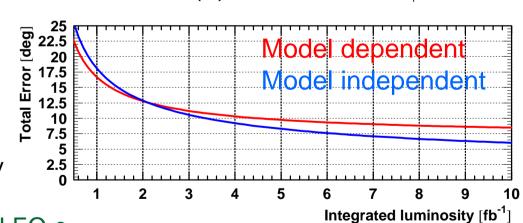
- A measurement of γ in tree level decays allows the construction of a pure SM unitarity triangle
 - Compare with loop determinations to search for new physics induced deviations
- Direct determination of γ average:
 - CKMFitter ICHEP 08: $\gamma = (68 \pm 30)^{\circ}$
 - Compare to $\sigma(\beta) \sim 1^{\circ}$

Major goal of LHCb is degree level precision on γ

Introduction $B^{\pm} \rightarrow DK^{\pm}$

• Current *B* factory determinations use $B \rightarrow DK$ decays that involve both $b \rightarrow c$ and $b \rightarrow u$ transitions Strong phase difference

- Access γ via interference if D⁰ and D⁰ decay to the same final state
- These measurements are theoretically clean
 - no penguin \Rightarrow CKM standard candle
 - a largest correction is sub-degree from D-mixing
- We have investigated several such decays


 $B^+ \rightarrow D(K^0 \pi \pi) K^+$

• Exploit differences between the $D \rightarrow K^0_S \pi^+ \pi^-$ Dalitz plots from B⁻ and B⁺

$$A^{-} = f(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i(-\gamma+\delta)}f(m_{+}^{2}, m_{-}^{2})$$
$$A^{+} = f(m_{+}^{2}, m_{-}^{2}) + r_{B}e^{i(\gamma+\delta)}f(m_{-}^{2}, m_{+}^{2})$$

 $m_{\pm} = K_s^0 \pi^{\pm}$ invariant mass and $f(m_{\pm}^2, m_{\mp}^2)$ Dalitz amplitudes

- Reconstruct ~5k events/year at LHCb with B/S~O(1)
- Two methods:
 - Model dependent
 - unbinned analysis with resonance model
 - Pro: full statistical power
 - Con: model systematic uncertainty
 - Model independent
 - binned analysis information from CLEO-c
 - Pro: easier measurement including systematic studies
 - Con: loss of statistical power ~20%

 m_{-}^2

 (GeV/c^2)

 \overline{D}^0

 m_{\perp}^2 (GeV/ c^2)

$$B \longrightarrow D(hh)K^{+}$$
Look at DCS and CF decays of D to obtain
rates that have enhanced interference terms
$$\Gamma(B^{-} \rightarrow (K^{-}\pi^{+})_{D}K^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma),$$

$$\Gamma(B^{-} \rightarrow (K^{+}\pi^{-})_{D}K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (K^{+}\pi^{-})_{D}K^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma),$$

$$\Gamma(B^{+} \rightarrow (K^{-}\pi^{+})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma),$$

$$\Gamma(B^{-} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi}\cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma),$$

$$\Gamma(B^{-} \rightarrow (h^{+}h^{-})_{D}K^{-}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} - \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma),$$

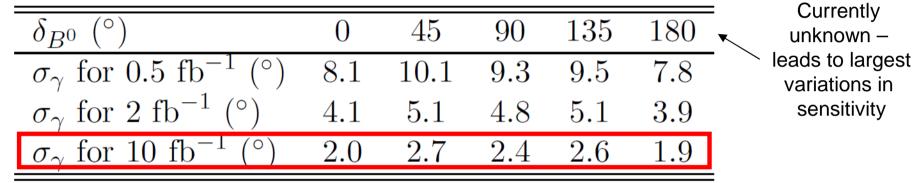
$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma),$$

$$\Gamma(B^{+} \rightarrow (h^{+}h^{-})_{D}K^{+}) \propto 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} + \gamma),$$

$$\Gamma(B^{$$


LHCb measure these rates

- $\label{eq:linear} \Box \quad Unknowns: r_B \sim 0.1, \ \delta_B, \ \delta_D{}^{K\pi}, \ \gamma, \ N_{K\pi}, \ N_{hh} \ \ (r_D = 0.06 \ well \ measured)$
- $\hfill With knowledge of the relevant efficiencies and BRs, the normalisation constants (N_{K\pi}, N_{hh}) can be related to one another$
- Overconstrained: 6 observables and 5 unknowns
- Identical procedure with $B^0 \rightarrow D(hh)K^{*0}$ smaller BF but $r_{B0} \sim 0.3$
- Can add multibody flavour specific states (i.e. K3π) exploiting CLEO-c data - UK involvement

. .

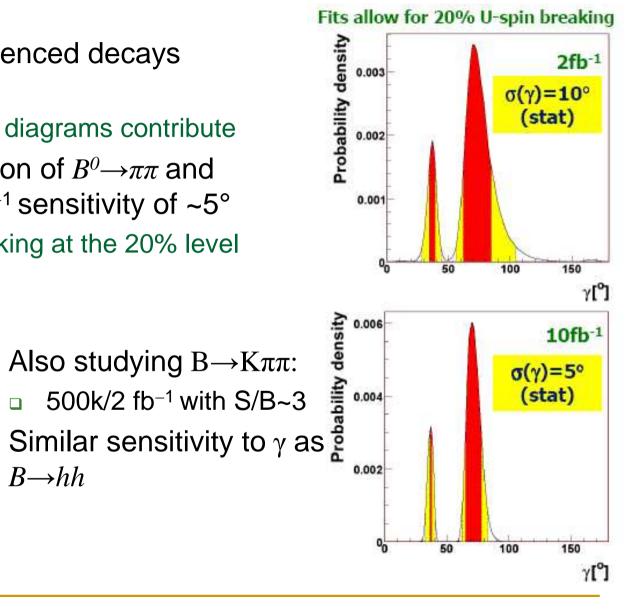
Combined results for tree-level y

 Given common parameters amongst the modes a global fit has been implemented

- CLEO-c inputs essential to these results
- Includes time-dependent measurements $B_s \rightarrow D_s K$ and $B \rightarrow D\pi$

Analysis	$\delta_{B^0}=0^\circ$	$\delta_{B^0} = 45^\circ$	
$B^- \to D^0(hh)K^-, B^- \to D^0(K^{\pm}\pi^{\mp}\pi^+\pi^-)K^-$	25	38	Weight of
$B^- \rightarrow D^0 (K^0_S \pi^+ \pi^-) K^-$	12	25	each mode
$B^0 \rightarrow D^0(hh) K^{*0}$	44	8	
$B_s \to D_s^{\mp} K^{\pm}$	16	24	
$B^0 \to D^{\mp} \pi^{\pm}$	3	5	

γ from loop influenced decays


- Also studying loop influenced decays which measure γ
 - Both penguin and tree diagrams contribute
- U-spin (d \leftrightarrow s) combination of $B^0 \rightarrow \pi\pi$ and $B^{0} \rightarrow KK$ leads to 10 fb⁻¹ sensitivity of ~5°

of data

5400

mass(MeV)

Allows for U-spin breaking at the 20% level

5200 5250 5300 5350

22

20 |

18

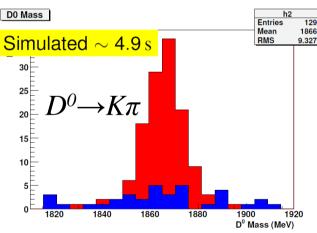
16

12 10

 $K\pi\pi$

5150

~10 min


 $B \rightarrow hh$

CPV in charm (for more information see P. Spradlin's talk at CKM 2008)

Charm physics at LHCb

- LHCb also excellent instrument for charm mixing and CP violation measurements
 - PID, vertexing and mass resolution
 - Up to 300 Hz of HLT output dedicated to $D^{*+} \rightarrow D^{0}(hh)\pi^{+}$
- For CP violation modes studies have been:
 - $\Box \quad D \rightarrow \pi\pi \text{ and } D \rightarrow KK$
 - Any deviations from zero (and between modes) signature of BSM physics

	Data set	$N(K^-K^+)$	$A_{ m CP}(K^-K^+)(\%)$
Belle	$540{ m fb}^{-1}$	$120 imes10^3$	$-0.43 \pm 0.30 \pm 0.11$
BaBar	$386 {\rm fb}^{-1}$	$130 imes10^3$	$0.00 \pm 0.34 \pm 0.13$
CDF	123 pb ⁻¹	$16 imes10^3$	$2.0\pm1.2\pm0.6$
HFAG Avg			-0.16 ± 0.23
LHCb	$10 {\rm fb}^{-1}$	$8 imes 10^6$	$A_{ m CP}\pm 0.04(m stat)^*$

*only charm from B so far – prompt charm as well can significantly increase sample

Other potential charm measurements

- Relatively unexplored area on LHCb
- Many more CP violation measurements possible
 - □ Time-dependent CP violation in $D^0 \rightarrow K\pi$
 - □ Three-body decay amplitude analyses:

•
$$D^0 \rightarrow K_S \pi \pi, D^0 \rightarrow K_S K \pi$$
 and $D^0 \rightarrow K_S K K$

 $D^+ \longrightarrow K\pi\pi \text{ and } D^+ \longrightarrow KK\pi$

- Four-body T-odd moments and amplitude analyses
 - $D^0 \rightarrow K \pi \pi \pi$
 - $D^0 \rightarrow KK\pi\pi$

More CPV B measurements

- Some other modes under study
 - $\Box \sin 2\beta$
 - $B \rightarrow \rho \pi$ and $B \rightarrow \rho^0 \rho^0$ to determine α
 - □ b→sg penguins: $B_s \rightarrow \phi \phi$, $B \rightarrow K^*K^*$ and $B \rightarrow \phi K^0_S$ ■ see Y. Xie at CKM 2008
 - $\Box B_s \rightarrow \phi \gamma$
 - see P. Koppenburg's talk at this meeting
 - Other $B \rightarrow DK$ modes:
 - $D \rightarrow K^0_S KK, D \rightarrow K \pi \pi^0, B \rightarrow D^* K \text{ and } B_s \rightarrow D \phi$
 - \square Time dependent measurements of γ

• $B \rightarrow D^*\pi$, $B \rightarrow D^*\rho$ and $B_s \rightarrow D_s K \pi \pi$

Conclusions

- Opportunities at LHCb to observe new physics in:
 - B_s mixing phase
 - Comparison of tree level unitarity triangle to that determined from loop influenced measurements
- LHCb is also LHCc
 - Huge charm samples produced
 - Will be used to search for new physics induced CPV

Many other CPV measurements will be made