

Search for Top-Squark Pair Production in the Single-Lepton Final State at 8 TeV

Alexandre Aubin (Institut Pluridisciplinaire Hubert Curien), on behalf of the CMS Collaboration

Context

Searching for a super-partner of the top quark (stop)

- Predicted by Super-Symmetric models
- Light mass (~1 TeV) motivated by naturalness
- Two types of decays are considered

Phenomenology

- Neutralinos ($ilde{\chi}^0$) leading to large missing transverse energy
- Topology varies as function of $\ \Delta m = m_{\tilde{t}} m_{\tilde{v}^0}$

- 1 electron or muon
- ≥ 4 jets, ≥ 1 b-tag
- missing $E_{\tau} > 100 \text{ GeV}$
- second lepton vetos (isolated track, hadronic τ)

match signal topology

aim to reject tt → ll background

Further optimization M_-based signal region

- $M_T = m_T(\ell, M\vec{E}T)$
- Large values sign several sources of ME₊
- Require M₊ > 120 GeV

using Boosted Decision Trees

- Up to 7 discriminating variables used in input
- Different trainings according to Δm regimes

Backgrounds

ullet Dileptonic tt(main background)

- ullet Semileptonic tt
- W + jets
- Others (single-top, tt+V, diboson, ..)

Tail of the jet multiplicity distribution for dileptonic tt is well-modeled

Additional ν

allow $M_{\perp} > M_{\odot}$

Topology of the main background

ost second Additional jets lepton from ISR/FSR

Control regions are designed to check and correct when needed the Monte-Carlo prediction.

Tail of the M₊ distribution for W+jets needs to be corrected

Results

- Perform a counting experiment in the tail of BDT output
- So far, no excess observed with respect to the S.M. prediction

Reference

Interpretation

- Upper limits on the production cross section are derived
- Comparison with theory excludes $m_{\widetilde{\tau}}$ up to 650 GeV

200

CMS

250 —

200 —

150

100 E