LHCC Poster Session - CERN, 5 March 2014

# Mixing and CP violation in the $B_s$ system with ATLAS

#### 1. Motivation

In the Standard Model *CP* violation is described by a phase in the CKM matrix. One of the manifestations of this complex phase is a phase shift between direct and mixing-mediated  $B_s$  decays producing a common final state. In the case of  $B_s \rightarrow J/\psi \Phi$  this phase shift is predicted to be small:  $\Phi_s = 0.0368 \pm 0.0018$  rad. New physics can enhance  $\Phi_s$  whilst satisfying all existing constraints.

#### 2. *CP* violation in $B_s$ system

To distinguish between different *CP* violating effects three categories are defined:

- **CP violation in decay:** decay amplitudes of *B*-meson and anti *B*-meson are different
- CP violation in mixing: asymmetry in the particle antiparticle oscillations (CP eigenstates are not equivalent to the mass eigenstates)

### 3. Used data and candidate selection

- 2011 data, 4.9 fb<sup>-1</sup> of 7 TeV proton-proton collisions
- single and di-muon triggers based on the identification of  $J/\psi \rightarrow \mu^+\mu^-$  decays with muon thresholds as low as 4 GeV

#### Offline candidate reconstruction:

• in the  $B_s \rightarrow J/\psi \Phi$  channel the CP violation occurs in **interference of mixing and decay**:



## 4. Flavour tagging

- inclusion of the  $B_s$  meson flavor at production enhances the fit sensitivity to  $\Phi_s$
- initial flavour of (neutral) B<sub>s</sub> can be inferred using the other B-meson, typically produced in the event (Opposite-Side Tagging)
- calibration by decays of  $B^{\pm} \rightarrow J/\psi K^{\pm}$  from the entire 2011 run period (same data quality selections)

#### Muon tagging:

- use semi-leptonic decay of the B-meson
- combined and segment-tagged muons are used (\*)
- momentum weighed charge of muon and tracks around
- diluted through  $b \rightarrow c \rightarrow \mu$ , but even so it has good separation power

#### Jet-charge tagging:

- used if the additional muon is absent
- momentum-weighted track-charge in jet

(\*) Combined muons have a full track in the muon spectrometer that is matched to a full track in the inner detector. Segment tagged muons have a full track in the inner detector that is matched to track segments in the muon spectrometer.

#### Tagging performance for the different tagging methods (statistical uncertainties only):

| Tagger              | Efficiency [%]  | Dilution [%] | Tagging Power [%] |
|---------------------|-----------------|--------------|-------------------|
| Segment Tagged muon | $1.08\pm0.02$   | $36.7\pm0.7$ | $0.15\pm0.02$     |
| Combined muon       | $3.37 \pm 0.04$ | $50.6\pm0.5$ | $0.86 \pm 0.04$   |



- |η| dependent mass cuts (retains)
- **J/\psi** 99.8 % of signal)
  - vertex: χ<sup>2</sup>/ndf < 10</li>
  - oppositely-charged track pair (not
- $\boldsymbol{\phi} \quad \begin{array}{c} \text{muons} \\ \bullet \quad p_T(K) > 1 \text{ GeV} \end{array}$ 
  - $|m(K^+K^-) m_{PDG}(\Phi)| < 11 \text{ MeV}$
- coming from same vertex
   $\mu^+\mu^-K^+K^-$  vertex fitting with  $J/\psi$  **B**<sub>s</sub>
  mass constraint
  vertex:  $\chi^2/ndf < 3$ 
  - 5.15 < m(J/ψΦ) < 5.65 GeV</li>
- in total 131k B<sub>s</sub> candidates were collected and used in the analysis

#### Monte Carlo:

- 12 million  $B_s \rightarrow J/\psi \Phi$  events
- background decay  $B_d \to J/\psi K^{0*}$  (these events can be mis-reconstructed as  $B_s \to J/\psi \Phi$ )
- more general backgrounds  $bb \rightarrow J/\psi X$  and  $pp \rightarrow J/\psi X$

## 6. Fitting model

An unbinned maximum likelihood fit was performed, using these per-candidate variables:

- $B_s$  mass  $m_i$  and proper decay time  $t_i$  and their uncertainties
- 3 angles between final-state particles in transversity basis  $\Omega_i( heta_{Ti}, \Phi_{Ti}, \psi_{Ti})$
- $B_s$  momentum  $p_{Ti}$
- $B_s$  tag probability and tagging method

Fit determines 9 physics variables that describe  $B_s \to J/\psi \Phi$  and S-wave ( $B_s \to J/\psi K^+ K^-$  (or  $f_0$ )) component:  $\Delta\Gamma$ ,  $\Phi_s$ ,  $\Gamma_s$ ,  $|A_0(0)|^2$ ,  $|A_{\parallel}(0)|^2$ ,  $|A_S(0)|^2$ ,  $\delta_{\parallel}$ ,  $\delta_{\perp}$ ,  $\delta_S$ 

Time dependent trigger efficiency

Background due to  $B^0 \rightarrow J/\psi K^{*0}$  and  $B^0 \rightarrow J/\psi K\pi^{(*)}$ 

| Jet charge | $27.7\pm0.1$   | $12.68\pm0.06$ | $0.45\pm0.03$ |
|------------|----------------|----------------|---------------|
| Total      | $32.1 \pm 0.1$ | $21.3\pm0.08$  | $1.45\pm0.05$ |

Initial flavour is expressed as probability that an event has a signal decay containing a b quark.

#### 5. Angular analysis

While the initial *B*-meson is a pseudoscalar, final-state particles are vectors. This results in an admixture of *CP*-odd and *CP*-even final states, with orbital angular momentum L = 0, 1 or 2. The *CP* states are separated statistically through the study of the distribution of the angular variables of the final state as a function of the  $B_s$  lifetime. This is performed through a combined lifetime-angular event-by-event fit.



## 8. Fit projections and $\Phi_s - \Delta\Gamma$ contour plot





Tag probabilities for the signal and background are different and since the background cannot be factorized out, extra PDF terms are included into account.

#### 7. Systematic uncertainties

| Effect of residual misalignment                                                                                                                                                                                              |                           | $\phi_s$    | $\Delta\Gamma_s$ | $\Gamma_s$  | $ A_{  }(0) ^2$ | $ A_0(0) ^2$ | $ A_{S}(0) ^{2}$ | $\delta_{\perp}$ | $\delta_{  }$ | $\delta_{\perp} - \delta_S$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------------------|-------------|-----------------|--------------|------------------|------------------|---------------|-----------------------------|
| (studied in signal MC)                                                                                                                                                                                                       |                           | (rad)       | $(ps^{-1})$      | $(ps^{-1})$ |                 |              |                  | (rad)            | (rad)         | (rad)                       |
|                                                                                                                                                                                                                              |                           |             |                  |             |                 |              |                  |                  |               |                             |
| Uncertainty in the relative<br>fraction of $B_d$ background<br>(contaminations from $B_d \rightarrow$<br>$J/\psi K^{0*}$ and $B_d \rightarrow J/\psi K\pi$<br>events mis-reconstructed as<br>$B_s \rightarrow J/\psi \Phi$ ) | <sup>\</sup> ID alignment | $< 10^{-2}$ | $< 10^{-3}$      | $< 10^{-3}$ | $< 10^{-3}$     | $< 10^{-3}$  | -                | $< 10^{-2}$      | $< 10^{-2}$   | -                           |
|                                                                                                                                                                                                                              | Trigger efficiency        | $< 10^{-2}$ | $< 10^{-3}$      | 0.002       | $< 10^{-3}$     | $< 10^{-3}$  | $< 10^{-3}$      | $< 10^{-2}$      | $< 10^{-2}$   | $< 10^{-2}$                 |
|                                                                                                                                                                                                                              | $-B_d^0$ contribution     | 0.03        | 0.001            | $< 10^{-3}$ | $< 10^{-3}$     | 0.005        | 0.001            | 0.02             | $< 10^{-2}$   | $< 10^{-2}$                 |
|                                                                                                                                                                                                                              | / Tagging                 | 0.10        | 0.001            | $< 10^{-3}$ | $< 10^{-3}$     | $< 10^{-3}$  | 0.002            | 0.05             | $< 10^{-2}$   | $< 10^{-2}$                 |
|                                                                                                                                                                                                                              | Models:                   |             |                  |             |                 |              |                  |                  |               |                             |
|                                                                                                                                                                                                                              | default fit               | $< 10^{-2}$ | 0.002            | $< 10^{-3}$ | 0.003           | 0.002        | 0.006            | 0.07             | 0.01          | 0.01                        |
| Uncertainty in the calibration of the tag probability                                                                                                                                                                        | signal mass               | $< 10^{-2}$ | 0.001            | $< 10^{-3}$ | $< 10^{-3}$     | 0.001        | $< 10^{-3}$      | 0.03             | 0.04          | 0.01                        |
|                                                                                                                                                                                                                              | background mass           | $< 10^{-2}$ | 0.001            | 0.001       | $< 10^{-3}$     | $< 10^{-3}$  | 0.002            | 0.06             | 0.02          | 0.02                        |
|                                                                                                                                                                                                                              | resolution                | 0.02        | $< 10^{-3}$      | 0.001       | 0.001           | $< 10^{-3}$  | 0.002            | 0.04             | 0.02          | 0.01                        |
| Uncertainties of fit model derived in pseudo-experiment studies                                                                                                                                                              | background time           | 0.01        | 0.001            | $< 10^{-3}$ | 0.001           | $< 10^{-3}$  | 0.002            | 0.01             | 0.02          | 0.02                        |
|                                                                                                                                                                                                                              | background angles         | 0.02        | 0.008            | 0.002       | 0.008           | 0.009        | 0.027            | 0.06             | 0.07          | 0.03                        |
|                                                                                                                                                                                                                              | Total                     | 0.11        | 0.009            | 0.003       | 0.009           | 0.011        | 0.028            | 0.13             | 0.09          | 0.04                        |
|                                                                                                                                                                                                                              |                           |             |                  |             |                 |              |                  |                  |               |                             |

#### 9. Results

Since the PDF describing the  $B_s \rightarrow J/\psi \Phi$  decay is invariant under the transformations

 $(\Phi_s, \Delta\Gamma_s, \delta_{\perp}, \delta_{\parallel}) \rightarrow (\pi - \Phi_s, -\Delta\Gamma_s, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel})$ , we consider only solutions with positive  $\Delta\Gamma_s$  (according to other experiments).

- 22,670 ± 150 signal B<sub>s</sub> from fit
- $\Phi_s$  and other parameters are consistent with the Standard Model prediction
- S-wave amplitude is consistent with 0

st.) rad ..)  $ps^{-1}$ (syst.) (syst.) st.) rad  $a_{pril} 2013$   $a_{pril} 2013$  $a_$ 

Comparison with other experiments

$$\begin{split} \phi_s &= 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1} \\ |A_0(0)|^2 &= 0.529 \pm 0.006 \text{ (stat.)} \pm 0.011 \text{ (syst.)} \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \\ \delta_{\perp} &= 3.89 \pm 0.46 \text{ (stat.)} \pm 0.13 \text{ (syst.) rad} \end{split}$$

Reference: ATLAS-CONF-2013-039



 $\phi_s$  [rad]

# Tomas Jakoubek (IoP ASCR, Prague), for the ATLAS Collaboration