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Abstract

Using the projection operator method, we derive the
microscopic formulae of the shear and bulk viscous re-
laxation times in relativistic hydrodynamics by . In the
leading-order of a perturbative calculation, we find the
ratios of the viscosities and corresponding relaxations
times are purely thermodynamic functions and inde-
pendent of the details of the interparticle scattering.

1. Motivation

Relativistic hydrodynamics is important in modelling col-
lective phenomena in astrophysics and heavy-ion colli-
sions. It is given by the energy-momentum conservation,

∂µ〈T µν〉 = 0,
with the energy-momentum tensor

〈T µν〉 = εuµuν − (P + Π)∆µν + πµν,

∆µν = gµν − uµuν.
Constitutive relations (CR) link shear stress tensor πµν
and bulk viscous pressure Π to the gradients of velocity.
• Navier-Stoke CR:

πµνNS = 2ηNS σ
µν,

ΠNS = −ζNS ∂µu
µ.

with σµν the traceless part of velocity-gradient-tensor.
• Problem: the forces, σµν and ∂µuµ instantaneously
influence the currents, πµνNS and ΠNS, which obviously
violates causality and leads to instabilities.

• Solution: Introducing retardation into CR, which leads
to causal and stable Israel-Stewart type theory,

τππ̇
µν + πµν = 2η σµν,
τΠΠ̇ + Π = −ζ ∂µuµ.

• Question: How can we calculate the new transport
coefficients, the relaxation times τπ and τΠ from a
microscopic theory?

2. Projection Operator Method

To separate the dynamics of slow gross (hydrodynamic)
variables, a coarse-graining procedure is needed to smooth
out the fast microscopic dynamics. The projection opera-
tor method provides a systematic way to do this:
• Target space: Suppose a column of gross variables is
consist of n operators, A(t) ≡ {Ai(t)}, i = 1, · · · , n.
Let Ā denote the corresponding Schrödinger
operators, Ā ≡ e−iHtA(t)eiHt. The target space is
spanned by Ā which is a subspace of the space
involving all operators of the system.

• Projection operator P: Following Mori, define P which
projects a operator O(t) onto the target space by

PO(t) =
n∑

i,j=1
(O(t), Ā†j)(Ā, Ā†)−1

ji · Āi,

(X, Y ) ≡
∫ β

0

dλ

β
Tr[ρeqeλKXe−λKY ],

where K = H − µN with N being the number
operator, and ρeq = e−βK/Tr[e−βK] is the equilibrium
statistical operator for grand canonical ensemble.

• Mori-Zwanzig equation: By using P, we can re-express
Heisenberg equations Ȧi(t) = i[H,Ai(t)] ≡ iLAi(t) by
the Mori-Zwanzig equation
∂

∂t
A(t) = i∆ ·A(t)−

∫ t

0
dτΞ(τ ) ·A(t− τ ) + ξ(t), (1)

where ∆ and Ξ(t) are (n× n) matrices and ξ is a
n-vector whose elements are given by

i∆ij =
∑
k

(iLĀi, Ā
†
k)(Ā, Ā

†)−1
kj ,

Ξij(t) = −θ(t)
∑
k

(iL ξi(t), Ā†k)(Ā, Ā
†)−1
kj ,

ξi(t) = ei(1−P)Lti(1− P)LĀi.

It is clearly seen from Eq. (1) that the time evolution of
A(t) is decomposed into three terms, where the first term
is completely determined by the instantaneous values of
A(t), the second term contains the memory effects, and
the third term is of microscopic origin leading to the noise.
In application, we can expand Ξ(t) around δ(t) term by
term in τmicro/τmacro. Usually, the approximation of taking
only the leading-order term is enough.

3. Shear Channel [1, 2]

Consider a fluid flowing in x direction but varying in y
direction. Thus there is no bulk viscous pressure. The
relevant gross variables are A = {T 0x, T yx}. Then the
Mori-Zwanzig equation becomes
∂tT

0x(ky, t) = −ikyT yx(ky, t), (2)
∂tT

yx(ky, t) = −ikyRπ
kyT

0x(ky, t)

−
∫ t

0
dτΞπ(ky, t− τ )T yx(ky, t) + ξπky(t), (3)

Rπ
ky = (T̄ yx(ky), T̄ yx(−ky))/(T̄ 0x(ky), T̄ 0x(−ky)).

When τmicro/τmacro � 1, we can do coarse-graining of
the memory term, ∫ t0 dτΞπ(ky, t− τ )→

∫∞
0 dτΞπ(ky, τ ),

then after ensemble averages, one finds that Eq. (2) be-
comes the continuity equation for momentum in x direc-
tion ∂µ〈T µx〉 = 0 and Eq. (3) gives the shear viscous CR
(inserting 〈T 0x〉 ≈ (ε + P )ux),

τπ∂tπ
yx(t,x) + πyx(t,x) = η∂yux(t,x),

where η and τπ are given by
η

β(ε + P )
= − ηNS

β lim
k→0

lim
ω→0

GR
T 0xT 0x(ω,k)

, (4)

τπ
β

= − ηNS

β lim
k→0

lim
ω→0

GR
T xyT xy(ω,k)

, (5)

with ηNS the shear viscosity of Navier-Stokes fluid given
by Green-Kobu-Nakano formula,

ηNS = i lim
ω→0

lim
k→0

∂GR
T xyT xy(ω,k)
∂ω

.

4. Bulk Channel [2, 3]

Consider a fluid flowing and varying in x direction and
having a planar symmetry in (y, z) plane. Then we have
no shear viscous tensor. The relevant gross variables are
A = {T 0x,Π}, with the bulk viscous pressure operator

Π(x) = 1
3

3∑
i=1

T ii(x)−
(
∂P

∂ε

)
n

T 00(x)−
(
∂P

∂n

)
ε

N(x).

The Mori-Zwanzig equation becomes
∂tT

0x(kx, t) = −ikxΠ(kx, t), (6)
∂tΠ(kx, t) = −ikxRΠ

kxT
0x(kx, t)

−
∫ t

0
dτΞΠ(kx, τ )Π(kx, t− τ ) + ξΠ

kx(t), (7)
RΠ
kx = (Π̄(kx), Π̄(−kx))/(T̄ 0x(kx), T̄ 0x(−kx)).

Similarly with shear channel, after coarse-graining and tak-
ing ensemble averages, Eq. (6) becomes the continuity
equation for momentum in x direction, and Eq. (7) gives
the bulk viscous CR,

τΠ∂tΠ(t,x) + Π(t,x) = −ζ∂µuµ(t,x),
where ζ and τΠ are given by

ζ

β(ε + P )
= − ζNS

β lim
k→0

lim
ω→0

GR
T 0xT 0x(ω,k)

, (8)

τΠ

β
= − ζNS

β lim
k→0

lim
ω→0

GR
ΠΠ(ω,k)

, (9)

with ζNS the bulk viscosity of Navier-Stokes fluid,

ζNS = i lim
ω→0

lim
k→0

∂GR
ΠΠ(ω,k)
∂ω

.

5. Applications

Suppose we have the leading-order results for ηNS and ζNS
in perturbative calculation, then from Eqs. (4), (5), (8),
and (9), we see that the leading-order results of η, τπ, ζ,
and τΠ can be obtained by computing the denominators
for non-interacting Lagrangian.
• Scalar Boson, L = ∂µφ

†∂µφ−m2φ†φ:
The improved energy-momentum tensor reads
T̂ µν = ∂µφ†∂νφ + ∂νφ†∂µφ− gµν(∂ρφ†∂ρφ−m2φ†φ)

−1
3
(∂µ∂ν − gµν∂2)φ†φ.

⇒ (omit the divergent vacuum terms)
lim
k→0

lim
ω→0

GR
T 0xT 0x(ω,k) = −(ε + P ),

lim
k→0

lim
ω→0

GR
T xyT xy(ω,k) = −P,

lim
k→0

lim
ω→0

GR
ΠΠ(ω,k) = 2

9
(ε− 3P )−

(1
3
− c2

s

)
(ε + P ),

with the sound velocity c2
s = (∂P/∂ε)s/n.

⇒
η = ηNS,

ζ = ζNS,
η

τπ
= P,

ζ

τΠ
=
(1

3
− c2

s

)
(ε + P )− 2

9
(ε− 3P ).

• Fermion, L = ψ̄(iγµ∂µ −m)ψ:
The energy-momentum tensor reads

T̂ µν = ψ̄iγµ∂νψ − gµνψ̄(iγρ∂ρ −m)ψ.
⇒ (omit the divergent vacuum terms)
lim
k→0

lim
ω→0

GR
T 0xT 0x(ω,k) = −(ε + P ),

lim
k→0

lim
ω→0

GR
T xyT xy(ω,k) = 0,

lim
k→0

lim
ω→0

GR
ΠΠ(ω,k) = 1

3
(ε− 3P )−

(1
3
− c2

s

)
(ε + P ),

⇒
η = ηNS,

ζ = ζNS,
η

τπ
= 0,

η

τπ
=
(1

3
− c2

s

)
(ε + P )− 1

3
(ε− 3P ).

• Pure gauge boson, L = −F µνFµν/4:
The energy-momentum tensor reads

T̂ µν = −F µλF ν
λ + 1

4
gµνF ρσFρσ.

⇒ (omit the divergent vacuum terms)
lim
k→0

lim
ω→0

GR
T 0xT 0x(ω,k) = −(ε + P ),

lim
k→0

lim
ω→0

GR
T xyT xy(ω,k) = −P,

lim
k→0

lim
ω→0

GR
ΠΠ(ω,k) = 4

9
(ε− 3P )−

(1
3
− c2

s

)
(ε + P ),

⇒
η = ηNS,

ζ = ζNS,
η

τπ
= P,

ζ

τΠ
=
(1

3
− c2

s

)
(ε + P )− 4

9
(ε− 3P ).

Remarks

• We derived the microscopic formulae for shear and bulk viscosities and corresponding relaxation times by using the
projection operator method.

• In perturbative calculation, at leading-order, our formulae for viscosities coincide with Green-Kubo-Nakano formulae.
• At leading-order, the ratios of viscosities and corresponding relaxation times are purely thermodynamic functions.
They are independent of the microscopic scattering details.

• Our results, when the particle creation and annihilation effects are omitted (which are not included in Boltzmann
equation), coincide with recent kinetic calculations [4, 5].

• We note that, there is lattice group working on calculating the viscous relaxation times [6].
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