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Gauge fields possess non-trivial topology
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QCD vacuum is a superposition of states 
            with different topology

Transitions between such states create
the local imbalance of chirality
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Black hole

D.Son, 
A.Starinets
hep-th/
020505

Topological transitions are frequent in sQGP
Chern-Simons number
diffusion rate
at strong coupling

NB: This 
calculation is 
completely 
analogous to the 
calculation of 
shear viscosity 
that led to the 
“perfect liquid”



DK, A.Krasnitz and R.Venugopalan,
Phys.Lett.B545:298-306,2002

P.Arnold and G.Moore,
Phys.Rev.D73:025006,2006

Topological transitions in QCD are seen 
in real-time lattice simulations 



Is there a way to observe topological charge 
fluctuations in experiment?

Relativistic ions create
a strong magnetic field:

H
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Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227

In a conducting
plasma, Faraday
induction can make
the field long-lived:
K.Tuchin, arXiv:1006.3051

NB: magnetic flux
is conserved in 
MHD! - expect the 
effect at LHC

Also:
V. Skokov, 
V. Toneev, 
A. Illarionov...



47

Heavy ion collisions: the strongest magnetic 
field ever achieved in the laboratory



where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (??) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field
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µ5 = A0
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Chiral Magnetic Effect
in a chirally imbalanced plasma

Fukushima, DK, Warringa, PRD‘08
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Chiral chemical potential is formally 
equivalent to a background chiral gauge field:

In this background, vector e.m. current 
is not conserved:

Compute the current through

The result: Coefficient is fixed 
by the axial anomaly, 
no corrections

10



Chiral magnetic conductivity:
discrete symmetries
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P-even
T-odd

P-odd

P-odd

P-odd
T-odd

P-odd effect!

T-even
Non-dissipative current!
(quantum computing etc)

cf Ohmic
conductivity:

T-odd,
dissipative

!J = σ !E



Holographic chiral magnetic effect:
the strong coupling regime (AdS/CFT)

H.-U. Yee, arXiv:0908.4189,
JHEP 0911:085, 2009;
V. Rubakov, arXiv:1005.1888, ...

A. Rebhan et al, JHEP 0905, 084 (2009), G.Lifshytz, M.Lippert, arXiv:0904.4772;...
E. D’ Hoker and P. Krauss, arXiv:0911.4518; A. Gorsky, P. Kopnin, A. Zayakin, arXiv:1003.2293,
also: Chiral separation, D. Son and P. Surowka, ‘09
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FIG. 3: Real (red, solid) and imaginary (blue, dashed) part of
the leading order normalized Chiral Magnetic conductivity at
high temperatures (T > µ5) for homogeneous magnetic fields
(p = 0). At ω = 0 the normalized conductivity is equal to 1.

conductivity drops from σ0 at ω = 0 to σ0/3 just away
from ω = 0.

D. Discussion

We display the real and imaginary part for T = 0, p =
0.1µ5 and µ = 0 in Fig. 1. As was argued at the end of
the previous subsection, it can be seen in this figure that
the real part of the Chiral Magnetic conductivity drops
from σ0 at ω = 0 to σ0/3 just away from ω = 0. Also
the resonance at ω = 2µ5 is clearly visible. The width of
the imaginary part at the resonance is equal to 2p. The
real part of the conductivity becomes negative above the
resonance frequency. This is a typical resonance behavior
and implies that when the imaginary part vanishes the
response is 180 degrees out of phase with the applied
magnetic field.

In Fig. 2 we display the real and imaginary part for
T = 0, p = 0.1µ5 and µ = 1.5µ5. In this case there are
resonances at ω = 5µ5 and ω = µ5. Equation (45) shows
that the imaginary part is proportional to ω2, therefore
the second resonance at ω = 5µ5 is much stronger than
the first one at ω = µ5. Because the second resonance
is due to the right-handed modes, and the first one due
to left-handed, the contribution of the second resonance
has opposite sign to the first resonance.

The real and imaginary part of the Chiral Magnetic
conductivity at high temperatures (T > µ5) are displayed
in Fig. 3. This figure is the most relevant for QCD at
very high temperatures, since then loop corrections will
be small. As argued in the previous subsection it can be
seen in the figure that the real part of the conductivity
drops from σ0 at ω = 0 to σ0/3 just away from ω = 0.

Let us now study the induced current in a magnetic

FIG. 4: Induced current in time-dependent magnetic field,
Eq. (49), as a function of time, at very high temperature.
The results are plotted for different values of the characteristic
time scale τ of the magnetic field.

field of the form created during heavy ion collisions. For
simplicity we approximate the two colliding nuclei by
point like particles like in Ref. [19]. This gives a reason-
able approximation to the more accurate methods dis-
cussed in Refs. [17, 18] and is most reliable for large im-
pact parameters. The magnetic field at the center of the
collision can then be written as

B(t) =
1

[1 + (t/τ)2]3/2
B0, (49)

with τ = b/(2 sinhY ) and eB0 = 8ZαEM sinhY/b2. Here
b denotes the impact parameter, Z the charge of the nu-
cleus, and Y the beam rapidity. For Gold-Gold (Z = 79)
collisions at 100 GeV per nucleon one has Y = 5.36. At
typical large impact parameters (say b = 10 fm) one finds
eB0 ∼ 1.9 × 105 MeV2 and τ = 0.05 fm/c. For 31 GeV
per nucleon (Y = 4.19) Gold-Gold collsions one finds at
b = 10 fm, eB0 ∼ 5.9 × 104 MeV2 and τ = 0.15 fm/c.
The Fourier transform of Eq. (49) equals

B̃(ω) = 2τ2|ω|K1(τ |ω|)B0, (50)

where K1(z) denotes the first-order modified Bessel func-
tion of the second kind.

For illustration purposes we will assume that our mag-
netic field is (unlike in heavy ion collisions) homogeneous.
The induced current can be found by applying Eq. (19).
We display the induced current in the magnetic field of
Eq. (49) in a system with nonzero chirality at very high
temperatures in Fig. 4. The induced current is plotted as
a function of time for three different characteristic time
scales τ of the magnetic field.

In any general decaying magnetic field, the only rel-
evant frequencies are the ones which are smaller than
of order the inverse life-time of the magnetic field, ω <∼

D.K., H. Warringa 
Phys Rev D80 (2009) 034028
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asymmetry can be investigated experimentally using the
observables proposed in Ref. [24]. Preliminary data of the
STAR collaboration has been presented in Refs. [25, 26].
Implications of the Chiral Magnetic Effect on astrophys-
ical phenomena have recently been discussed in Ref. [27];
another astrophysical implication can be found in [28].

A system of massless fermions with nonzero chirality
can be described by a chiral chemical potential µ5 which
couples to the zero component of the axial vector current
in the Lagrangian. The induced current in such situa-
tion can be written as j = σχB, where σχ is the Chiral
Magnetic conductivity. For constant and homogeneous
magnetic fields its value is determined by the electro-
magnetic axial anomaly and for one flavor and one color
equal to [22, 29, 30] (see also [31])

σχ(ω = 0,p = 0) ≡ σ0 =
e2

2π2
µ5, (2)

where ω and p denote frequency and momentum respec-
tively, and e equals the unit charge. For a finite number
of colors Nc and flavors f one has to multiply this result
by Nc

∑
f q2

f where qf denotes the charge of a quark in
units of e. The generation of currents due to the anomaly
in background fields or rotating systems is also discussed
in related contexts in Refs. [31–35].

For constant magnetic fields which are inhomogeneous
in the plane transverse to the field one finds that the total
current J along B equals [22],

J = e
⌊eΦ

2π

⌋Lzµ5

π
, (3)

where Lz is the length of the system in the z-direction
and the flux Φ is equal to the integral of the magnetic
field over the transverse plane,

Φ =
∫

d2x B(x, y). (4)

The floor function "x# is the largest integer smaller than
x. The quantity "eΦ/(2π)# in Eq. (3) is equal to the
number of zero modes in the magnetic field [36].

To compute the current generated by a configuration
of specific topological charge, one should express µ5 in
terms of the chirality N5. By using the anomaly relation
one can then relate N5 to the topological charge. This is
discussed in detail in Ref. [22].

The aim of this paper is to study how a system with
constant nonzero chirality responds to a time dependent
magnetic field. This is interesting for phenomenology
since the magnetic field produced with heavy ion colli-
sions depends strongly on time. To obtain the induced
current in a time-dependent magnetic field, we will com-
pute the Chiral Magnetic conductivity for nonzero fre-
quencies and nonzero momenta using linear response the-
ory. We will compute the leading order conductivity and
leave the inclusion of corrections due to photon and or
gluon exchange for future work. In leading order the Chi-
ral Magnetic conductivity for an electromagnetic plasma

and quark gluon plasma are equal (up to a trivial factor
of Nc). Since we do not take into account higher order
corrections, some of our results for QCD will only be
a good approximation in the limit of very high tempera-
tures where the strong coupling constant αs is sufficiently
small.

We will take the metric gµν = diag(+,−,−,−).
The gamma matrices in the complete article satisfy
{γµ, γν} = 2gµν . We will use the notation p for both
the four-vector pµ = (p0,p) and the length of a three-
vector p = |p|.

II. KUBO FORMULA FOR CHIRAL
MAGNETIC CONDUCTIVITY

For small magnetic fields, the induced vector current
can be found using the Kubo formula. This formula tells
us that to first order in the time-dependent perturbation,
the induced vector current is equal to retarded correlator
of the vector current with the perturbation evaluated in
equilibrium. More explicitly, one finds that

〈jµ(x)〉 =
∫

d4x′ Πµν
R (x, x′)Aν(x′), (5)

where jµ(x) = eψ̄(x)γµψ(x) and the retarded response
function Πµν

R is given by

Πµν
R (x, x′) = i〈[jµ(x), jν(x′)]〉θ(t− t′). (6)

The equilibrium Hamiltonian is invariant under trans-
lations in time and space, therefore we can use that
Πµν

R (x, x′) = Πµν
R (x−x′). Let us take a vector field of the

following specific form Aν(x) = Ãν(p)e−ipx. The Kubo
formula now becomes,

〈jµ(x)〉 = Π̃µν
R (p)Ãν(p)e−ipx, (7)

where

Π̃µν
R (p) =

∫
d4x eipxΠµν

R (x). (8)

In order to compute the Chiral Magnetic conductiv-
ity we will take a time-dependent magnetic field pointing
in the z-direction. Because of Faraday’s law (∇ × E =
−∂B/∂t), such time-dependent magnetic field comes al-
ways together with a perpendicular electric field. Let
us choose a gauge such that the only component of the
vector field that is non-vanishing is Ay. Then Bz(x) =
∂xAy(x) so that B̃z(p) = ip1Ã2(p). Using Eq. (7) we
find that the induced vector current in the direction of
the magnetic field can now be written as

〈jz(x)〉 = σχ(p)B̃z(p)e−ipx, (9)

where the Chiral Magnetic conductivity equals

σχ(p) =
1

ip1
Π̃23

R (p) =
1

2ipi
Π̃jk

R (p)εijk. (10)

Strong coupling

Weak coupling



“Chiral magnetic effect in 2+1 flavor QCD+QED”,
M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou,  ArXiv 0911.1348;
Columbia--RIKEN-BNL--Bielefeld

2+1 flavor Domain Wall Fermions, fixed topological sectors, 16^3 x 8 lattice

Red - positive charge
Blue - negative charge

“Numerical evidence for chiral magnetic effect 
in lattice gauge theory”,
P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov,  ArXiv 0907.0494; PRD
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No sign problem for the chiral chemical potential 
- direct lattice studies are possible

Fukushima, DK, 
Warringa, PRD‘08
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arXiv:1105.0385, May 3, 2011



+

-

excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

Charge asymmetry w.r.t. reaction plane 
as a signature of strong P violation



Slide from S. Voloshin



NB: P-even quantity (strength of P-odd fluctuations)



NB: P-even quantity (strength of P-odd fluctuations)



S.Esumi et al 
[PHENIX Coll]
April 2010

Talk by 
N.Ajitanand
(PHENIX)



Are the observed fluctuations of charge asymmetries 
a convincing evidence for the CME? 

21

A number of open questions that still have to be clarified:

in-plane vs out-of-plane,              e.g. A. Bzdak, V. Koch, J. Liao,
new observables?                                  arXiv:0912.5050; 1005.5380; ...

physics “backgrounds”               e.g. M. Asakawa, A. Majumder, B. Muller,
                                                                      arXiv:1003.2436
                                                                     S. Pratt and S. Schlichting, arXiv:1005.5341
                                                                     F. Wang, arXiv: 0911.1482; ...
Fortunately, a number of analytical and numerical (lattice)
tools are available to theorists,
and the new data (low energy, PID asymmetries, U-U)
will hopefully come - this question can be answered! 
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A new test: baryon asymmetry

CME Vorticity-induced 
“Chiral Vortical Effect”

CME: 
(almost) only 
electric charge

CVE: 
(almost) only 
baryon charge

DK, D.T.Son
arXiv:1010.0038; PRL



DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th];
PRD

The CME in relativistic hydrodynamics: 
The Chiral Magnetic Wave

23

Propagating chiral wave: (if chiral symmetry
                                          is restored)

Gapless collective mode is the carrier of CME current in MHD:

CME                         Chiral separation

Electric

Chiral



The Chiral Magnetic Wave
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DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th]

The velocity of CMW
computed in Sakai-Sugimoto
model (holographic QCD)

In strong magnetic field, CMW 
propagates with the speed of light!

Chiral

Electric



CMW in QGP fluid at finite baryon density:
         the chiral dipole moment

Y.Burnier, DK, J. Liao, H.-U.Yee, arXiv:1103.1307

!B



Electric quadrupole moment of QGP 
at finite baryon density

Y.Burnier, DK, J. Liao, H.-U.Yee, arXiv:1103.1307



Elliptic flow of positive pions should be 
smaller than that of negative ones
(always, not a fluctuation!) 

Electric quadrupole moment of QGP: 
the signature

-

+

+

-

Y.Burnier, DK, J. Liao, H.-U.Yee, arXiv:1103.1307 - submitted to PRL

Also:
relevant for charge 
correlations!
(RHIC vs LHC)



+

The difference of elliptic flows: 
quantitative estimates

+

+

v2(π+) < v2(π−)

Y.Burnier, DK, J. Liao, H.-U.Yee, arXiv:1103.1307

~10% percent difference in v_2?



1. B violation
2. CP violation
3. Non-equilibrium
      dynamics

A.D. Sakharov,
JETP Lett. 5 (1967) 24

Chirality generation in QGP vs. 
Baryogenesis in the Early Universe 

29

Baryon number             Chirality
EW sphalerons              QCD sphalerons
Big Bang                       “Little bang” 



Summary
Chiral symmetry and parity invariance

are fundamental 

  Interplay of topology, chirality and 
magnetic field leads to 

 the Chiral Magnetic Effect:
confirmed by lattice QCD x QED,

signature of chiral symmetry restoration
 

Experimental evidence at RHIC?
need for more studies at RHIC and LHC;

they are underway (PID, low and high energies)


