R_{AA} Measurements in PHENIX

Martin L. Purschke, BNL

for the PHENIX Collaboration

Overview

Centrality Dependence of R_{AA}

System Size and Energy Dependence

Medium modification of jets

R

"Ratio of measured particle yields to what would have been measured if a Heavy -lon collision was just a superposition of independent p-p collisions"

If it is just such a superposition, the ratio is 1, by definition

Any deviation denotes differences to a simple-minded superposition image

$$R_{AA}(p_{\tau}) = \frac{yield(AuAu)/N_{coll}}{yield(pp)}$$

10 Years Ago - QM2001

10 Years ago we discovered π^0 suppression at RHIC

One Decade Later - QM2011

- 0-10% Au-Au central points suppressed across the whole p_T range
- PHENIX data reach out to 20GeV/c p_T

For the past decade, R_{AA} has been one of the workhorse variables A wealth of results available from different probes

$\pi^0 p_T Spectra \sqrt{s_{NN}} = 200 GeV$

Spectra show the reach of the PHENIX data up to 20GeV/c

Centrality Dependence $\sqrt{s_{NN}}$ = 200 GeV

- $\pi^0 R_{AA}$ measured up to $p_T = 20 \text{ GeV/}c$ (central Au+Au)
- Constant $R_{AA} \approx 0.2$ in central Au+Au up to highest p_T (5 < p_T < 20 GeV/c)

Final-State Effect

PHENIX π⁰ d+Au 200 AGeV

- d-Au data show no or very little suppression
- Evidence that this is a final-state effect

How does this look at LHC Energies?

0-5% ALICE with 0-10% PHENIX Centrality

0-5% ALICE with 0-5% PHENIX Centrality

System Size and Energy Dependence

We can, up to a point, control the system size by varying the species and the collision energy

CuCu at 200, 64, 22.4

AuAu at 200, 62.4, 39, {19.6}

Different-sized systems with the same number of participants look very similar

R_{AA} shows similar behavior at AuAu, CuCu at 200GeV

39 GeV Au+Au data added to the 22.4GeV Cu+Cu data

Au-Au at various energies

Medium Peripheral

PHENIX, Au+Au 40-60 %, 39 GeV 1.4 40-60 %, 62 GeV 1.2 40-50 %, 200 GeV ¥ 0.8 0.4 **PH***ENIX 0.2 Preliminary 10 5 15 20 p_T [GeV/c]

Central

No transition away from suppression seen at 39GeV yet

Transition between 22.4 GeV CuCu and 39 GeV Au+Au

Here, at long last, we see some enhancement instead of suppression at 22.4 at the most central collisions

The quest for the transition point is on right now... Stay tuned.

- 62.4, 200 GeV:
 - Suppression consistent with parton energy loss for p_⊤ > 3 GeV/c
- 22,4 GeV:
 - No suppression
 - Enhancement consistent
 with calculation that
 describes Cronin
 enhancement in p+A
- Parton energy loss starts to compensate Cronin enhancement between 22.4 and 62.4 GeV

The Upshot - Energies & System

Phys. Rev. Lett.101, 162301 (2008)

The next task is to describe the behavior with a universal function We'll show one approach which transforms the x axis only

Extracting Common Behavior

Total energy available in the collision:

$$E_{AA} \equiv \frac{\left(N_{part} \cdot \sqrt{s_{NN}}\right)}{2}$$

System:

•Circles: Cu+Cu

Squares: Au+Au

Energy:

•Red: 200 GeV

•Blue: 62.4 GeV

•Black: 39.0 GeV

Orange: 22.4 GeV

The suppressed systems show a similar trend in this variable Caveat: Does not work equally well for all p_T ranges

N. Novitzky Friday afternoon

Overview of R_{AA} results

R_{AA} results in various channels

The direct photon data are consistent with 1 up to about 14 GeV/c

π⁰ and η is suppressed

Proton, ϕ and ω

The proton is not suppressed

The φ behaves like a meson, not a baryon. It's not the mass that counts but the quark composition

All together now

Summary of R_{AA} results in various channels, with references

Measuring Fragmentation via γ-hadron

γ-hadron correlation

Direct γ defines jet kinematics precisely

Plot fragmentation function in ξ rather than z (basically shows z distribution logarithmically)

Further detail in slides of N. Grau's talk (yesterday)

First direct measurement of inmedium fragmentation via γ tagged jets

In addition to its fundamental importance, this results further underscores the need to measure full jets

Jet R_{AA} in 200 GeV Cu-Cu

R_{AA} of fully reconstructed jets

Centrality-dependent suppression of jet yields observed.

Could be out-of cone radiation from medium interaction

Or the jet shape or other properties are modified and makes the jet fail the rejection cut

Either one would be a *really* interesting result

N. Grau

Caveat: Know your Reference

R_{CP} of fully reconstructed jets from d+Au

All R_{AA} measurements need a corresponding R_{dA} measurement as crosscheck

The data are presently R_{CP} but may indicate that CNM effects should not be ignored.

Stay tuned.

Summary

- R_{AA} has been a very versatile workhorse variable for the past 10 years
- Large variety of probes with large p_⊤ reach available
- Hadrons are suppressed except for CuCu at 22.4GeV/c
- No suppression of direct photons up to 14GeV/c
- First measurement of the fragmentation function in Au+Au
- Full reconstructed Jet R_{AA} shown
- For the next decade, the focus will be on full jets
- Stay tuned for exciting new results from the next 10 years of PHENIX.

More PHENIX Presentations

Plenary: S. Bathe (PHENIX Overview) Monday Morning

Parallel: R. Lacey (v3, jet shape) Monday Afternoon

Parallel: D. Sharma, LightVector Mesosns, Monday afternoon

Plenary: S. Esumi, Tuesday Morning

Parallel: A. Sen (quarkonia) Tuesday Afternoon

Parallel: N. Grau (gamma-hadron, jets) Tuesday Afternoon

Parallel: E. Kistenev (direct photons) Thursday Afternoon

Parallel: M. Chiu (small x dAu correl) Thursday Afternoon

Parallel: A. Sickles (PHENIX Upgrades) Thursday Afternoon

Plenary: C. Luiz da Silva, Friday Morning

Parallel: J. Kamin (dAu dileptons) Friday Afternoon

Parallel: X. Gong (energy scan: bulk) Friday Afternoon

Parallel: M. Durham (open heavy flavor) Friday Afternoon

Parallel: N. Novitzky (energy scan) Friday Afternoon

Poster: S. Mizuno (PID v3)

Poster: Z. Citron (small x dAu correlations)

Poster: D. Perepelitsa (Jets in d+Au)

Poster: S. Withaker (Upsilon RAA)

Poster: A. Takahara (J/psi photoproduction)

Poster: M. Tannenbaum (E loss RHIC vs. LHC)

Reserve Slides

Path Length Dependence

At non central collision

Reaction plane (Ψ)

Geometrical anisotropy

The almond shape of the collision region provides a built-in way to look at different path lengths through the medium in the same collision system, type, centrality

Much better than varying energy, size

Gives a handle on energy loss per path length

Longer Path Length

Short Path Length

Path Length Dependence

This is R_{AA} as a function of the calculated path length L_{ϵ}

 L_{ϵ} assumes an ellipsoid as an overlap of hard spheres

calculates distance from center as function of angle

Details in Phys. Rev C 80, 054907 (2009)

R_{CP} for π⁰ and Jet R_{CP}

R_{dA} for π^0 and η

Phys. Rev. Lett. 98, 172302 (2007)

Path Length Dependence

N part

RAA in-plane, out-of-plane, and in between, Au+ Au 200

RAA flatter out of plane (longest path) with centrality

Curves converge at highest centralities (diminishing asymmetries)

The new AuAu 39AGeV data points

No in-house p-p reference data yet at 39GeV.

Interpolation of 62.4, 200GeV data with the help of the Tevatron E706 data, and theoretical predictions

Very "RHIC-like" behavior for Au-Au at 39GeV... no transition yet

Just finished taking 17 Million Au-Au events at 19.6 GeV... stay tuned for more at the next QM.

H.F. Electrons

[Whatever we add, something has to go]

Path Length Dependence

More peripheral collisions mean a more asymmetric overlap region

Maximum variation in path length

Reserve Slides

The PHENIX Detector at RHIC

- Central Arms $|\eta| < 0.35$ Identified charged hadrons
- π^0 , η
- Direct Photon
- Heavy Flavor

Muon Arms $1.2 < |\eta| < 2.4$

- J/Ψ
- Unidentified charged hadronsHeavy Flavor

$$\mathbf{MPC} \bullet \boldsymbol{\pi}^0, \boldsymbol{\eta}$$

$$3.1 < |\eta| < 3.9$$

π^0 reconstruction from inv. mass

 $\pi^0 \rightarrow \gamma \gamma$ at pT~25 GeV/c: ~90% are merged in PbSc ~50% are merged in PbGI