Jet Probes of $\sqrt{s_{NN}}$ = 2.76 TeV Pb+Pb Collisions with the ATLAS Detector

Brian A. Cole Columbia University on behalf of the ATLAS Collaboration

Jet Quenching

Key question:

 How do parton showers in hot medium (quark gluon plasma) differ from those in vacuum?

• 1st ATLAS result:

 Insight on differential quenching
 ⇒ Next: probe "inclusive" quenching

Jet Quenching: Inclusive Observables

Vitev, Wicks, Zhang, JHEP 0811 (2008) 093

Armesto, Salgado, *et al*, JHEP 0802 (2008) 048

Key questions:

⇒ (How much) Is the jet yield suppressed?
⇒ How does suppression depend on jet radius?
⇒ Is the fragmentation function D(z) modified?
⇒ Is the hadron angular distribution broadened?

Pb+Pb Measurements in ATLAS

ATLAS: Fall 2010 Pb+Pb Data set

Centrality measured by FCal ΣE_T

 N_{coll} from Glauber Monte Carlo analysis

For QM 2011 analyses Using solenoid on, good runs: 47 million events

Centrality bin	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%
$N_{\rm coll}^{\rm cent}/N_{\rm coll}^{60-80\%}$	56.7	34.9	21.1	12.2	6.5	3.2
Relative error (%)	11.4	10.5	11.3	7.9	6.1	3.8

Calorimetry over $\Delta \eta = 9.8$

Jet reconstruction (1)

Cacciari, M., Salam, G. P. and Soyez, G., *The anti-kt jet clustering algorithm*, Journal of High Energy Physics, 2008, 063

Use anti-k_t clustering algorithm

cone-like but infrared and collinear safe

Perform anti-k_t reconstruction prior to any background subtraction

-R = 0.4 and R = 0.2
-Input: Δη x Δφ = 0.1 x 0.1 towers

Jet reconstruction (2)

Take maximum advantage of ATLAS segmentation

- Underlying event estimated and subtracted for each longitudinal layer and for 100 slices of $\Delta \eta = 0.1$

 $\Rightarrow E_{T_{sub}}^{cell} = E_{T}^{cell} - \rho^{layer}(\eta) \times A^{cell}$

 $-\rho$ is energy density estimated event-by-event

 \Rightarrow From average over 0 < ϕ < 2 π

Avoid biasing ρ due to jets

- Two methods:
 - ⇒Sliding window exclusion
 - ⇒Exclude cells in jets satisfying

 $D = {E_T}_{max}^{tower} / \! ig \langle E_T^{tower} ig
angle > 5$.

- For R = 0.4, add an iteration step to ensure jets with $E_T > 50$ GeV are always excluded from ρ
- Correct for underlying event v₂

Monte Carlo

Monte Carlo: GEANT PYTHIA + GEANT HIJING

- ⇒Bin-by-bin unfolding corrections to jet spectra for detector ⊕ underlying event ⊕ analysis
- ⇒ Asymmetry w/ detector ⊕ underlying event ⊕ analysis ⊕ combinatoric 2nd jet
- Compare data, Monte Carlo:
- Event-by-event
 Std Dev of ΣE_T in
 7x7 groups of
 towers
 - ⇒ ~ R = 0.4
 - ➡(@ EM scale)

Single Jet Rates, R = 0.4

Single jet spectra

For single jet spectra

 Centrality independent 22% systematic error on normalization due to 4% jet energy scale uncertainty. 10

Single Jet Rates, R = 0.2

Single jet spectra

Single jet spectra/N_{coll}

For single jet spectra

 Centrality independent 22% systematic error on normalization due to 4% jet energy scale uncertainty. 11

Jet Yield/N_{coll} vs centrality

R = 0.2

R = 0.4

12

Systematic errors account for:

 Centrality dependence of jet energy resolution and jet energy scale and N_{coll} uncertainties

Jet Yield/N_{coll} vs centrality

R = 0.2

R = 0.4

• For both R = 0.2 and R = 0.4

⇒Observe a monotonic decrease in jet yield/N_{coll} from peripheral to central collisions.

Single Jet central to peripheral ratio: Rcp

R = 0.4

• Observe:

⇒Factor of \approx 2 suppression of jet yield/N_{coll} in central (0-10%) collisions relative to 60-80% collisions.

Single Jet central to peripheral ratio: Rcp

R = 0.2

• Observe:

⇒Comparable suppression in R = 0.2 and R = 0.4 jet yields/N_{coll} over full range of reported E_T

Single Jet central to peripheral ratio: Rcp

R = 0.2

R = 0.4

• Observe:

⇒Suppression independent of jet E_T within statistical ⊕ systematic errors

Jet Fragmentation (Transverse)

• Measure distribution of fragment p_T normal to jet axis: $j_T \equiv p_T^{
m had} \sin \Delta R = p_T^{
m had} \sin \left(\sqrt{\Delta \eta^2 + \Delta \phi^2} \right)$

- For both R = 0.2 and R = 0.4 jets
- Not unfolded for angular resolution

Compare central (0-10%) to peripheral (60-80%)

- No substantial broadening observed.

Jet Fragmentation (Longitudinal)

• Measure distribution of fragment p_T along jet axis: $z \equiv \left(\frac{p_T^{had}}{E_T}\right) \cos \Delta R$

- **–** For both R = 0.2 and R = 0.4 jets
- Systematic uncertainties from jet energy resolution, centrality dependence of jet energy scale.
- Compare central (0-10%) to peripheral (60-80%)

Jet Fragmentation Ratios (Longitudinal)

R = 0.4 E_T > 100 GeV

• Evaluate ratio of $1/N_{jet} dN/dz$ in different centrality bins to peripheral (40-80%)

⇒At most, small (~ 20%) weakly z-dependent suppression in central (0-10%) collisions.

Jet Fragmentation Ratios (Longitudinal)

R = 0.2 75 < E_T < 100 GeV

• Evaluate ratio of $1/N_{jet} dN/dz$, different centrality bins to peripheral (40-80%)

⇒ ~ 20% Suppression in central (0-10%, 10-20%) collisions for 0.05 < z < 0.3</p>

Di-jet Asymmetry

R = 0.4, E_{T1} > 100 GeV, E_{T2} > 25 GeV

- Full statistics
- Iteration step in background estimation
- Correction for flow in underlying event

 $E_{T1} - E_{T2}$

 $\overline{\boldsymbol{E_{T2}}} + \overline{\boldsymbol{E_T}}_1$

– MC down to 35 GeV

Di-jet Asymmetry, R = 0.4

R = 0.4 E_{T1} > 100 GeV E_{T2} > 25 GeV

Di-jet Asymmetry, R = 0.2

R = 0.2 E_{T1} > 100 GeV E_{T2} > 25 GeV

NB: underlying event fluctuations in R = 0.2 ~ 1/2 of R = 0.4

Di-jet Asymmetry, R = 0.2

25 Gev $\begin{array}{c} \begin{array}{c} \begin{tabular}{c} \label{eq:constraint} \\ \end{tabular} \\ \end{t$ Centrality 20-30% Centrality 10-20% $E_{T_1} > 100 \text{ GeV}$ HIJING+PYTHIA $E_{T_2} > 25 \text{ GeV}$ Pb+Pb Data R = 0.20.5 Centrality 60-80% Centrality 30-40% Centrality 40-60% 3.5 2.51.50.5 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 A₁

24

R = 0.2 E_{T1} > 100 GeV E_{T2} > 25 GeV

NB: underlying event fluctuations in R = 0.2 ~ 1/2 of R = 0.4

Di-jet Δφ **Distributions**

- This is clearly a combinatoric contribution to $R = 0.4 \text{ di-jet } \Delta \phi$ distribution
 - 2nd jet "missing" and uncorrelated jet used
- But, combinatoric contribution much smaller for R = 0.2.
 - Yet, equally strong asymmetry modification.

Summary (1)

$R = 0.2 R_{cp}(cent)$ $R = 0.2 R_{cp}(E_T)$ $R = 0.4 R_{cp}(E_T)$

We observe a factor of ~ 2 suppression in jet yield at high E_T in central collisions
 ⇒Gradual turn-on of suppression with centrality
 ⇒R = 0.2 and R = 0.4 results quantitatively similar
 ⇒No significant (yet) E_T dependence of suppression

Summary (2)

 We observe no significant broadening of fragment J_T distribution

 \Rightarrow Remains to be quantified.

We observe, at most, weak modification of fragment z distributions

⇒ Restricted to intermediate z?

Summary (3)

 With improvements in underlying jet analysis (background, flow correction) since 2010 PRL

⇒Conclusions re: modifications of di-jet asymmetry & no broadening in Δφ only strengthened.

⇒Not a result of UE fluctuations

• A_J distributions sensitive to E_{T2} , $\Delta \phi$ cuts

- Events with 2nd jet "missing" appear @ end-point of A_J

– Important physics in events that fail E_{T2} , $\Delta \phi$ cuts

Summary (4)

Many thanks to the LHC for outstanding 2010 run !

 $L_{int} = 7 \mu b^{-1}$

Δφ

Backup Material

Di-jet Asymmetry, ET1 Dependence

 $100 < E_{T1} < 125$ $125 < E_{T1} < 150$ $150 < E_{T1} < 200 \text{ GeV}$

Di-jet Asymmetry, E_{T1} Dependence

R = 0.2 Di-jet $\Delta \phi$ Distributions

R = 0.2, E_{T1} > 75 GeV, E_{T2} > 25 GeV

Pb+Pb Jet Energy Resolution (JER)

• From HIJING + PYTHIA GEANT Monte Carlo – PYTHIA samples with $35 < \hat{p}_T < 280~{
m GeV}$

Jet Reconstruction Efficiency

Anti-kt R = 0.4, jet reconstruction efficiency

 truth match ΔR < 0.2

Energy, p_T flow analysis

Dijet event before & after

• Before subtraction $-\Sigma E_T \text{ in } \Delta \eta x \Delta \varphi =$ 0.1x0.1 towers

• After subtraction, underlying event at zero

• Event topology unchanged by subtraction.

A (more) symmetric dijet event

Peripheral, symmetric dijet event

An asymmetric event

More central, asymmetric dijet event

Another asymmetric event

Even more central collision, more asymmetric dijet

Yet another asymmetric event

Central event, with split dijet + additional activity