Nuclear modification factors from the CMS experiment

for the CMS Collaboration

CMS studies of the nuclear modification factors

- PbPb data sample used in this talk: PbPb collisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}, \int \text{Ldt} \sim 7 \text{ }\mu\text{b}^{-1}$
- Study of the colorless probes
- Study of the jet quenching and medium modification by looking at the magnitude of the charged particle suppression
 Complementary to direct jet reconstruction
- Results are compared with parton energy loss models

Nuclear modification factor

"NN equivalent integrated luminosity per AA collision"

Nuclear Modification factors from the CMS experiment Quark Matter 2011

3

CMS studies of the colorless probes

- Z bosons:
 - First measurement of the Z boson production in PbPb
- Photons:
 - Measurement of isolated photons to reject decay photons
 - Probe the nuclear parton distribution function
 - Future analysis: shadowing effect at low $p_{_{T}}$ and isospin effects at high $p_{_{T}}$
- Used to check the initial state and # of binary collisions

CMS studies of the charged particles

- Large suppression observed at RHIC
- Study of the final state and medium modification

CMS detector

Trigger and event selection

- MinBias Trigger:
 - Coincidence of BSC or Forward calorimeter signal
 - Trigger efficiency: $97\% \pm 3\%$
- Di-Muon Trigger:
 - Two reconstructed tracks in the muon detector with $p_{\tau} > 3 \text{ GeV/c}$
- Photon Trigger:

Yen-Jie Lee(MIT)

- Uncorrected photon E₁ > 15 GeV
- Jet Trigger: [gives high p_τ reach]
 - Uncorrected jet E_{τ} > 35, 50 GeV
- Centrality determination:
 - Forward calorimeter (HF) energy

Our first $Z \rightarrow \mu^{+}\mu^{-}$ candidate in PbPb

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

Muon 0, pt: 29.7 GeV

Muon 1, pt: 33.8 GeV

Study of $Z \rightarrow \mu^+ \mu^-$ in PbPb collisions

- Clean Z signals from opposite-sign di-muon
- T_{AA} normalized yield is consistent with POWHEG (NLO)
- No modification is found with respect to the pp reference

Isolated photons in PbPb collisions

Isolated high p_T photons

- Ideal: Direct photon from hard scattering
- Real world: Background from the decay and fragmentation photons.
- Solution: Measurement of the isolated photons

Photon isolation in PbPb

CMS Experiment

Sum E_{τ} (p_{τ}) from Calorimeter and tracker

Contribution from underlying event

Isolated photon

Photon candidate from jet

Background subtraction

 Background subtracted isolation by using the mean E_{τ} per unit area in the η strip and remove the underlying event contribution inside the isolation cone

Background subtracted isolation in PbPb

CMS Experiment

Sum $E_{T} (p_{T})$ from Calorimeter and tracker < 5 GeV with background subtracted

Photon candidate from jet

Photon signal extraction

- A technique used in CMS pp analysis
- Signal template: obtained from PYTHIA+MinBias data
- Background template: obtained from non-isolated π^0 , η in jet, obtained using a data driven method

Photon pp reference spectrum

- JETPHOX calculation agrees with data within 20%
- Photon pp reference:

Yen-Jie Lee(MIT)

- NLO calculation from JETPHOX with CT10 PDFs / BFG-II FFs
- Photon isolation requirement: E_{τ} <5 GeV in a cone of ΔR <0.4

Photon E_{τ} spectra in PbPb collision

- The reconstructed photon spectra in each centrality bin is scaled by T_{AA}
- Results are consistent JETPHOX calculation

Isolated photon R_{AA} in 0-10% PbPb collisions

- CMS measured the isolated photon R_{AA} for the first time
- The photon R_{AA} at 0-10% is consistent with unity

Isolated photon R_{AA} vs N_{Part}

Summary of colorless probes

- No modification of the initial state. The hard scattering processes scale with the number of binary collisions from the Glauber model
- Baseline for the study of charged particle production
- High statistics run in 2011 will shrink both statistical and systematic uncertainties

Analysis of $Z \rightarrow e^+e^-$ and $W \rightarrow \mu v$ are on-going

Yen-Jie Lee(MIT)

See Lamia Benhabib's poster

γ -jet event in PbPb collisions

Charged particles spectra in pp collisions

- Measurements in pp collisions at \sqrt{s} = 0.9, 7 TeV with jet trigger
- 4 times higher p_{T} reach than any other experiments
- Calorimeter triggering:
 - Lower the fake rate of the high $p_{_{\rm T}}$ tracks

Yen-Jie Lee(MIT)

Charged particle pp reference

For $p_T < 10$ GeV/c: Bin-by-bin interpolation from experimental data

For p_T >10 GeV/c: (NLO-based) x_T -scaling of existing data

Tracking Performance in CMS

- Efficiency ~65% and Fake < 3% up to 100 GeV/c
- Momentum resolution is below 3% (correction < 3%) up to 100 GeV/c
- Fake rates cross-checked by calorimeter matching and sideband of the impact parameter distributions

Charged particle spectra in PbPb collisions

• Extended the p_{τ} reach with jet triggers up to 100 GeV/c

See Andre S. Yoon's talk on Thu 4pm

Charged particle R_{AA} in different centralities

- Dip structure developing as a function of centrality
- R_{AA} increases as a function of p_T in the p_T >10 GeV/c region

Charged particle R_{AA} compared to models

Strong constraint on the parton energy loss models

Summary

- CMS has measured the R_{AA} of isolated photons, Z and charged particles
- No modification is observed in Z and photon production. Confirmation of the Glauber scaling for the pQCD probes
- Large suppression is observed in the PbPb charged particle spectra which is due to the final state medium modification. Extended the high p_{τ} reach to 100 GeV/c. The R_{AA} rises to ~ 0.5 at high p_{T} in
- 0-10% central events. Strong constraints on the parton energy loss models

Backup slides

Beam scraping event rejection

Centrality Determination

- Forward calorimeter (HF) is used for centrality determination.
- The distribution of the total energy in HF is used to divide the sample into centrality bins.

Photon

- Reconstructed from CMS ECAL Barrel ($|\eta|$ <1.44) and E_T > 20 GeV
- Additional photon energy correction is applied to remove the underlying Pb+Pb event contribution. (1 – 11%). Corrected statistically by PYTHIA + MB.
- Photon energy resolution is 2 10% as a function of event centrality and photon pT (20 80 GeV).

Photon ID and isolation

- Photon ID:
 - Hadronic / EM energy < 20%
- SumIso: (Iso_{ECAL} + Iso_{HCAL} + Iso_{Track})
 - Background subtracted.
 - Photon candidate E_{τ} subtracted in ECAL.
 - Cone size: <u>∆</u>R < 0.4
 - SumIso < 5 GeV
- Signal Extraction: Transverse shower shape σ_{min}
 - Shower width in the η direction
 - Data driven background shape.
 - Separate isolated photons from the isolated π⁰, η

See Yongsun Kim's talk on 5/27 5pm

Yen-Jie Lee(MIT)

Charged particle systematic uncertainties

Source	Uncertainty $[\%]$
Reconstruction efficiency	3.0 - 4.5
Non-primary and fake tracks	2.5 - 4.0
Momentum resolution and binning	3.0
Normalization of jet-triggered spectra	0.0 - 4.0
Total for PbPb spectra	4.9 - 7.8

Source	Uncertainty [%]
Total for PbPb spectra	4.9 - 7.8
$T_{\rm AA}$ determination	4.1–18
Interpolated pp reference spectrum	6.8 - 13
Total for R_{AA}	9.3-24

$R_{CP}(p_T)$ for Different Centralities

Comparison between CMS and ALICE R_{AA}

Comparison between CMS and WHDG

