

Observation of the antimatter Helium-4 (anti-α) nucleus

arXiv:1103.3312v2 DOI: 10.1038/nature10079 Nature Vol 473,(2011) 353-356 Liang Xue^{a,b} for the STAR Collaboration

^aBrookhaven National Laboratory ^bShanghai Institute of Applied Physics

- Introduction & Motivation
- Evidence of the observation of ⁴He
- Quality check for ⁴He
- ⁴He invariant yields
- Summary

History of antimatter

Relativistic heavy ion collider (RHIC)

- RHIC as an antimatter production facility, can create controllable, repeatable "little bangs".
- Determine whether ⁴He exists, provide a point of reference for future observations in cosmic radiation.

Production mechanisms

Sato, H. & Yazaki, K. Phys. Lett. B 98, 153-157 (1981) Butler, S. T. & Perarson, C. A. Phys. Rev. Lett. 7, 69-71 (1961)

STAR White paper NPA 757, (2005) 102-183

$$N_i = Vg_i \int \frac{d^3p}{(2\pi)^3} \exp(-\frac{E_i}{T} + \frac{\mu_i}{T})$$

- Relativistic Heavy Ion collisions :
 High antibaryon density
 High temperature
- Favorable environment for both production mechanisms.

STAR detectors

VPD - start time measurement

Time Projection Chamber (TPC) - momentum & dE/dx

Online High Level tracking
Trigger (HLT) - Select
events with charge-2 tracks

- 2007 AuAu 200GeV (TPC).
- 2010 AuAu 200GeV and 62GeV selected by HLT (TPC +TOF).
- One billion AuAu collisions.

TOF - stop time measurement

STAR high level trigger

- Sector level 3 (SL3).
 - 24 in total, each for a TPC sector.
 - data acquisition.
 - hit reconstruction.
 - online sector tracking

- Global level 3 (GL3).
 - event reconstruction.
- selecting events with charge-2 tracks.
- ~70% efficiency for events with charge-2 tracks, compared to offline reconstruction.
- Select ~0.4% of events.

Particle identification

$$n\sigma_{dE/dx} = \frac{1}{R_{dE/dx}} ln(\frac{\langle dE/dx \rangle^{measured}}{\langle dE/dx \rangle^{expected}})$$

 $R_{dE/dx} \sim 7.5\%$

H. Bichsel, Nucl. Inst. & Meth. A. 562 (2006) 154

- 2 counts from year 2007 are identified by TPC alone.
- dE/dx merge together at higher momentum region, TOF information is needed.

Particle identification

- TPC:
 - Track path length: L
 - Magnetic rigidity: p/|Z|
- TOF, VPD:
 - Time of flight: Δt
 - Velocity: $\beta = L/\Delta t$

$$m^2/Z^2 = p^2/Z^2(\frac{1}{\beta^2} - 1)$$

Particle identification

16+2 ⁴He counts in total.

- An clean separation for ³He and ⁴He can be seen by projecting to mass axis.
- Candidates counted within the windows of, -2. $< n\sigma_{dE/dx} < 3$., and, $3.35 GeV/c^2 < mass < 4.04 GeV/c^2$.

Background estimation

- ³He expands its mass distribution to ⁴He area because of TOF timing resolution, and , contributes to the backgrounds of ⁴He.
- We reproduce ${}^3\!H\!e$ mass distribution using a "t" calculated with " $t_{expected}$ " and time deviation (Δt) from other tracks.
- 1.4(0.05) backgrounds in 15(1) from 200GeV(62GeV) Au+Au collisions recorded in 2010.
- The miss-identification probability is $\sim 10^{-11}$ (a significance more than 6σ).

Quality check for ⁴He

Anti-α track qualities and event display figures

Anti-α information:

- Run10 200GeV Au+Au collisions
 - 1. First anti-α candidate track qualities.

Global quality TPC quality TOF quality

runID	evtID	vtxZ	RefMult	nHits	nHitsdEdx	p/ Z	eta	phi	dca	L	chi2	nσ _{4He}	toflocalZ	toflocalY	tof	β	М
11073003	164108	-4.21	478	41	20	2.319	0.791	2.835	0.789	250.75	1.62	2.11	-0.92	-1.49	12.14	0.78	3.726

- Red dots highlights the ⁴He candidate.
- Hits and tracks within
 5cm around the candidate are shown.
- Different colors stand for tracks with different magnitude of momentum.

STAR

⁴He invariant yields

- An exponential trend is predicted by both coalescence and statistical model.
- Production rate reduce by 1.6×10³ (1.1×10³) for each additional anti-nucleon (nucleon) added to the anti-nucleus (nucleus).
- The yield of the stable antimatter nucleus next in line (B = -6) is predicted to be down by a factor of 2.6x10⁶ compared to ⁴He and is beyond the reach of current accelerator technology.

Particle ratios:

- Measured:

 ${}^{4}\text{He}/{}^{3}\text{He} \sim (3.0\pm1.3(\text{stat}))\times10^{-3}$ ${}^{4}\text{He}/{}^{3}\text{He} \sim (3.2\pm2.3(\text{stat}))\times10^{-3}$

- Statistical model:

 ${}^{4}\text{He}/{}^{3}\text{He}$ is ~ 3.1x10⁻³ ${}^{4}\text{He}/{}^{3}\text{He}$ is ~ 2.4x10⁻³

Andronic, A. et al., Phys. Lett. B 697, 203 (2011)

$$E_A \frac{d^3 N_A}{d^3 p_A} \propto B_A (E_p \frac{d^3 N_p}{d^3 p_p})^A$$

$$E_A \frac{d^3 N_A}{d^3 p_A} = \frac{gV}{(2\pi)^3} E e^{-m_p A/T}$$

R. Scheibl. PRC 59:1585, (1999)

E. Schnedermann. PRC 48, (1999), 2462

Antimatter search in the Universe

⁴He in the Cosmos, hint of the existence of massive antimatter in the Universe.

STAR

Summary

- ⁴He were observed in AuAu collisions with data from year 2007 and year 2010. Considering the background, the probability of miss-identification is 10⁻¹¹ (a significance more than 6σ).
- The invariant yields of ⁴He and ⁴He were calculated with central events. An exponential trend was observed, consistent with the expectations from coalescence and thermodynamic models.
- Barring the dramatic discovery of heavier stable anti-nucleus in the Universe, or a new breakthrough in accelerator technology, it is likely that ⁴He will remain the heaviest stable antimatter nucleus observed in the foreseeable future.
- RHIC is an ideal antimatter production facility, and, with TOF and HLT,
 STAR is in a good position to study exotic nuclei production.

Thank you!

Back up

STAR

⁴He counts

- 18 counts in total.
 - 15 from Run 10 Au+Au 200 GeV collisions
 5 minbias + 5 central with 1 tagged by both triggers
 6 from other triggers.
 - 1 from Run10 Au+Au 62 GeV collisions
 - 2 from Run7 Au+Au 200 GeV collisions
- In Run 10 200 GeV Au+Au collisions.

	Counts	Background	Significance
⁴ He	26	3.5	7.6
⁴ He	15	1.4	6.5

⁴He yields

• ⁴He/³He ratio is measured with Run10 200GeV central collisions.

 Using ³He invariant yields dN/(2πp_Tdp_Tdη) from previous measurements to calculate ⁴He yields.

• p_T/A: 0.75 ~ 1 GeV/c

• ⁴He: 5 ⁴He: 2

• ³He: 953 ³He: 352

 α /primary He3 : 3.0 +- 1.3 (stat) + 0.5 - 0.3 (sys) e-3

anti α /primary anti He3 : 3.2 +- 2.3 (stat) + 0.7 - 0.2 (sys) e-3

helium3	$2.85e-06 \pm 0.30e-6(stat) + 0.29-1.14e-06(sys)$				
anti-helium3	$1.02e-06 \pm 0.11e-06(stat) + 0.10-0.41e-06$				
helium4	$8.6e-09 \pm 3.8e-09(stat) + 0.9-2.8e-09(sys)$				
anti-helium4	$3.3e-09 \pm 2.4e-09(stat) + 0.5-0.9e-09(sys)$				

STAR Miss-identification probability & Significance

 The miss-identification probability can be calculated with Poisson distribution as bellow:

$$p = \frac{m^k}{k!}e^{-m}$$

$$p(15/1.4) = \frac{1.4^{15}}{15!}e^{-1.4} \sim 3.0 \times 10^{-11}$$

With the miss-identification probability, the significance "n" can be calculated with formula:

$$P(x >= S + B) = \int_{n}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$
 $n \sim 6.5$

Mass resolution

$$m^2 = p^2(t^2/l^2 - 1)$$

$$m\delta m = p^2 t \delta t / l^2$$