Centrality and p_T dependence of charged particle R_{AA} in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV Andre S. Yoon for the CMS Collaboration ## **Nuclear Modification Factor** $$R_{AA} = \frac{d^2N_{AA}/dp_Td\eta}{\left\langle T_{AA}\right\rangle d^2\sigma_{pp}/dp_Td\eta} \sim \frac{\text{"QCD Medium"}}{\text{"QCD Vacuum"}} \left\{ \begin{array}{l} R_{AA} > 1 \text{ (enhancement)} \\ R_{AA} = 1 \text{ (no medium effect)} \\ R_{AA} < 1 \text{ (suppression)} \end{array} \right.$$ Tomographic access to medium properties via pQCD E-loss models # Current State of Knowledge - R_{AA} is very sensitive to the details of the quenching parameters at high p_T - CMS is capable of measuring single charged particle up to ~O(100) GeV/c ## **CMS** Detector ## **Nuclear Modification Factor** PbPb spectra (using minimum-bias and jet-triggers) $$R_{AA} = \frac{d^2N_{AA} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta}$$ pp reference spectrum (using minimum bias and jet-triggers) # Charged Particle Spectra in pp arXiv:1104.3547 # Reference pp Spectrum # Reference pp Spectrum - Bin-to-bin interpolation (p_T<10 GeV/c) and NLO based x_T scaling up to 100 GeV/c - Good agreement with PYTHIA8 (<10%) and NLO rescaled CMS 7 TeV measurement - Interpolation well constrained (7-13%) by measurements at different collision energies ## **Nuclear Modification Factor** PbPb spectra (using minimum-bias and jet-triggers) $$R_{AA} = \frac{d^2N_{AA} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta}$$ pp reference spectrum (using minimum bias and jet-triggers) ## **Event selections** ## Minimum Bias Trigger: - HF or BSC firing in coincidence on both sides ### Jet Triggers: - Background subtracted uncorrected jet energies (35, 50 GeV) #### Event selection: - Beam halo veto - Primary vertex with at least 2 tracks - 3 towers (E>3 GeV) in each of HF± - Beam-scraping cleaning - Primary vertex |z|<15 cm # Inclusion Of Jet Triggers Jet triggers are used to enhance the p_T reach and to have low fake # Tracking Performance in CMS - Efficiency ~65% and fake < 3% up to 100 GeV/c - Momentum resolution below 5% (correction %) up to 100 GeV/c 12 # Systematic Uncertainties for Spectra | Source | Uncertainty [%] | |--|-----------------| | Reconstruction efficiency | 3.0 – 4.5 | | Non-primary and fake tracks | 2.5 – 4.0 | | Momentum resolution and binning | 3.0 | | Normalization of jet-triggered spectra | 0.0 – 4.0 | | Total for PbPb spectra | 4.9–7.8 | # Charged Particle Spectra in PbPb # Systematic Uncertainties for R_{AA} | Source | Uncertainty [%] | |------------------------------------|-----------------| | Total for PbPb spectra | 4.9 - 7.8 | | $T_{ m AA} { m determination}$ | 4.1–18 | | Interpolated pp reference spectrum | 6.8 – 13 | | Total for R_{AA} | 9.3–24 | # $R_{AA}(p_T)$ for different centralities # R_{AA} over two decades in p_T ! # Summary and Conclusions - With the pp reference spectrum constructed based on the CMS measurements, R_{AA} is measured up to 100 GeV/c. - Unambiguous suppression of charged particles above a few GeV/c and a continued rise of R_{AA} up to 0.5 (0-5%) are observed. - Put strong constraints on parton energy-loss models and allow an access to medium properties (dN_g/dy and \hat{q}) by comparison to pQCD predictions. # Backup Slides # **Collision Centrality** Events are classified according to the percentile of the Pb+Pb inelastic cross section based on total deposited HF energy # R_{CP}(p_T) for Different Centralities # Collision Centrality | Centrality Bin | $\langle N_{ m part} angle$ | r.m.s. | $\langle N_{ m coll} angle$ | r.m.s. | $\langle T_{\mathrm{AA}} \rangle$ (mb ⁻¹) | r.m.s. | |----------------|------------------------------|--------|------------------------------|--------|---|--------| | 0 - 5% | 381 ± 2 | 19.2 | 1660 ± 130 | 166 | 25.9 ± 1.06 | 2.60 | | 5 - 10% | 329 ± 3 | 22.5 | 1310 ± 110 | 168 | 20.5 ± 0.94 | 2.62 | | 10 - 30% | 224 ± 4 | 45.9 | 745 ± 67 | 240 | 11.6 ± 0.67 | 3.75 | | 30 - 50% | 108 ± 4 | 27.1 | 251 ± 28 | 101 | 3.92 ± 0.37 | 1.58 | | 50 - 70% | 42.0 ± 3.5 | 14.4 | 62.8 ± 9.4 | 33.4 | 0.98 ± 0.14 | 0.52 | | 70 - 90% | 11.4 ± 1.5 | 5.73 | 10.8 ± 2.0 | 7.29 | 0.17 ± 0.03 | 0.11 | - Uncertainty on N_{coll} value driven by two terms: - Trigger and event selection efficiency - Glauber parameters # Tracking efficiency in pp arXiv:1104.3547 # x_T scaling interpolation $$E d^3 \sigma / d^3 p = F(x_T) / p_T^{n(x_T, \sqrt{s})} = F'(x_T) / \sqrt{s}^{n(x_T, \sqrt{s})}$$ - Small scaling violation due to running and the evolution of PDFs and FFs. - n = 5-6 NLO preferred - NLO residual corrections arXiv:1104.3547 # 2010 Heavy Ion Run at LHC ## 2010 has been a successful year at LHC After delivering 40 pb-1 of pp data, LHC delivered over 9 μ b⁻¹ of PbPb data ~ 7 μ b⁻¹ used in this analysis # Inclusion Of Jet Triggers Jet triggers are used to enhance the p_T reach and to have low fake # Comparison to ALICE RAA # R_{AA} slope 0.00063 +/- 0.0014