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Hard processes in QCD

• Hard process: scale Q >> LQCD

• Hard scattering High-pT parton(photon) Q~pT

• Heavy flavour production m >> LQCD

Cross section calculation can be split into 

• Hard part: perturbative matrix element

• Soft part: parton density (PDF), fragmentation (FF)

Soft parts, PDF, FF are universal: independent of hard process

QM interference between hard and soft suppressed (by Q2/L2 ‘Higher Twist’) 

Factorization
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Seeing quarks and gluons

In high-energy collisions, observe traces of quarks, gluons (‘jets’)
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Fragmentation and parton showers

large Q2 Q ~ mH ~ LQCD
mF

Analytical calculations: Fragmentation Function D(z, m) z=ph/Ejet
Only longitudinal dynamics

High-energy

parton

(from hard scattering)

H
a

d
ro

n
s

MC event generators

implement ‘parton showers’
Longitudinal and transverse dynamics
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Jet Quenching

1) How is does the medium modify parton fragmentation?

• Energy-loss: reduced energy of leading hadron – enhancement of yield at 

low pT?

• Broadening of shower?

• Path-length dependence

• Quark-gluon differences

• Final stage of fragmentation 

outside medium?

2) What does this tell us about the medium ?

• Density

• Nature of scattering centers? (elastic vs radiative; mass of scatt. centers)

• Time-evolution?

High-energy

parton

(from hard scattering)
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Medium-induced radition

If l < f, multiple scatterings 

add coherently

2ˆ~ LqE Smed 
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Zapp, QM09

Lc = f,max

propagating 

parton

radiated

gluon

Landau-Pomeranchuk-Migdal effect

Formation time important

Radiation sees 

length ~f at once

Energy loss depends on density:
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and nature of scattering centers
(scattering cross section)

Transport coefficient
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Testing volume (Ncoll) scaling in Au+Au 

PHENIX

Direct g spectra

Scaled by Ncoll

PHENIX, PRL 94, 232301

ppTcoll

AuAuT

AA
dpdNN

dpdN
R




/
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Direct g in A+A scales with Ncoll

Centrality

A+A initial state is incoherent superposition of p+p for hard probes
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0 RAA – high-pT suppression

Hard partons lose energy in the hot matter

g: no interactions

Hadrons: energy loss

RAA = 1

RAA < 1

0: RAA ≈ 0.2

g: RAA = 1
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Two extreme scenarios

p+p

Au+Au

pT

1
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Scenario I

P(E) = d(E0)

‘Energy loss’

Shifts spectrum to left

Scenario II

P(E) = a d(0) + b d(E)

‘Absorption’

Downward shift

(or how P(E) says it all)

P(E) encodes the full energy loss process

RAA not sensitive to energy loss distribution, details of mechanism
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Four theory approaches

• Multiple-soft scattering (ASW-BDMPS)

– Full interference (vacuum-medium + LPM)

– Approximate scattering potential

• Opacity expansion (GLV/WHDG)

– Interference terms order-by-order (first order default)

– Dipole scattering potential 1/q4

• Higher Twist

– Like GLV, but with fragmentation function evolution

• Hard Thermal Loop (AMY)

– Most realistic medium

– LPM interference fully treated

– No finite-length effects (no L2 dependence)
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Energy loss spectrum

Brick

L = 2 fm, E/E = 0.2

E = 10 GeV

Typical examples with fixed L

<E/E> = 0.2 R8 ~ RAA = 0.2

Significant probability to 

lose no energy (P(0))
Broad distribution, large E-loss 

(several GeV, up to E/E = 1)

Theory expectation: mix of partial transmission+continuous energy loss

– Can we see this in experiment?
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Geometry

Density profile

Profile at  ~ form known

Density along parton path

Longitudinal expansion 

dilutes medium

 Important effect

Space-time evolution is taken into account in modeling
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Determining    
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q̂

ASW:

HT:

AMY:

/fmGeV2010ˆ
2q

/fmGeV5.43.2ˆ
2q

/fmGeV4ˆ
2q

Large density:

AMY: T ~ 400 MeV

Transverse kick: qL ~ 10-20 GeV

All formalisms can match RAA, but large differences in medium density

At RHIC: E large compared to E, differential measurements difficult

After long discussions, it turns out that these differences 

are mostly due to uncontrolled approximations in the calculations

 Best guess: the truth is somewhere in-between
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RAA at LHC
ALICE

PHENIX

RAA at LHC: increase with pT  first sign of sensitivity to P(E)

A
L

IC
E

, P
L

B
6

9
6

, 3
0

Larger ‘dynamic range’ at LHC very important – stay tuned
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RAA RHIC and LHC II

Overlaying the two results: 

PHENIX 0 and ALICE h± pT-dependence not too different…

N.B.: Large uncertainties in RHIC result at high pT
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Path length dependence: RAA vs L

PHENIX, PRC 76, 034904

In Plane

Out of Plane

3<pT<5 GeV/c

RAA as function of angle with reaction plane

Suppression depends on angle, path length

Relation between RAA(j) and v2:

   )(2cos21 2 jj  vRR AAAA
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Path length dependence and v2
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v2 at high pT due to energy loss

Most calculations give too small effect

Path length dependence stronger than expected?

Depends strongly on geometry – stay tuned

3
ˆ LqE2

ˆ LqE
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Dihadron correlations

associated

j

trigger

8 < pT
trig < 15 GeV

pT
assoc > 3 GeV

Use di-hadron correlations to probe the jet-structure in p+p, d+Au

Near side Away side

and Au+Au

Combinatorial
background
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d+Au Au+Au 20-40% Au+Au 0-5%

Suppression of away-side yield in Au+Au collisions: energy loss

High-pT hadron production in Au+Au dominated by (di-)jet fragmentation

Di-hadrons at high-pT: recoil suppression
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Dihadron yield suppression

Away-side: Suppressed by factor 4-5 

 large energy loss

Near side Away side

STAR PRL 95, 152301

8 < pT,trig < 15 GeV

Yield of additional 

particles in the jet

Yield in balancing 

jet,  after energy loss

Near side: No modification 

 Fragmentation outside medium?

Near side
associated

trigger

Away side associated

trigger
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Path length II: ‘surface bias’

Near side trigger, 

biases to small E-loss

Away-side large L

Away-side suppression IAA samples longer path-lengths 

than inclusives RAA
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L scaling: elastic vs radiative

T. Renk, PRC76, 064905

RAA: input to fix density Radiative scenario fits data; elastic 

scenarios underestimate suppression

Indirect measure of path-length dependence: 

single hadrons and di-hadrons probe different path length distributions

Confirms L2 dependence  radiative loss dominates
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Intermediate pT

• Enhanced baryon/meson ratio

– Hadronisation by coalescence?

• Enhanced near-side yield at large h ‘ridge’

– Triangular flow?

• Away-side double-peak structure

– Mach cone?

– Triangular flow?

So far, focused on high-pT

Where factorisation may hold pT > 1-4 GeV

Some other ‘puzzling’ (i.e. not dominated by jet fragmention+energy loss) 

observations at intermediate pT:
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Baryon excess

STAR Preliminary
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High pT: Au+Au similar to p+p

 Fragmentation dominates

Baryon/meson = 0.2-0.5

Intermediate pT, 2 – 6 GeV

Large baryon/meson ration in Au+Au
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Hadronisation through coalescence

fragmenting parton:

ph = z p, z<1

recombining partons:

p1+p2=ph

Fries, Muller et al
Hwa, Yang et al

Meson
pT=2pT,parton

Recombination of 
thermal (‘bulk’) partons

produces baryons at larger pT

Recombination enhances
baryon/meson ratio

Hot matter

Baryon 
pT=3pT,parton

R
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e
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t, Q
M

0
9

Note also: v2 scaling
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Near-side Ridge

3 < pt,trig< 4 GeV/c

Au+Au 0-10%
STAR preliminary

associated

j

trigger

`Ridge’: associated yield at large h, small f

Ridge softer than jet – medium response  probably v3

Weak dependence of ridge yield on pT,trig

 Relative contribution reduces with pT,trig

4 < pt,trig < 6 GeV/c

Au+Au 0-10%
STAR preliminary

Jet-like peak

pt,assoc. > 2 GeV/c
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0-12%

4.0 < p
T

trig < 6.0 GeV/c 6.0 < p
T

trig < 10.0 GeV/c3.0 < p
T

trig < 4.0 GeV/c

Preliminary

Au+Au 0-12%
1.3 < p

T
assoc < 1.8 GeV/c

Low pT
trig: broad shape, two peaks High pT

trig: broad shape, single peak

Away-side shapes

Fragmentation becomes ‘cleaner’ as pT
trig goes up

Suggests kinematic effect?

M. Horner, M. van Leeuwen, et al
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v3, triangular flow
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Participant fluctuations lead to triangular component of initial state anisotropy

This may well be the underlying mechanism for both ‘ridge’ and ‘Mach cone’
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Jet reconstruction

Single, di-hadrons: focus on a few fragments of the shower

 No information about initial parton energy in each event

Jet finding: sum up fragments in a ‘jet cone’

Main idea: recover radiated energy – determine energy of initial parton
Feasibility depends on background fluctuations, angular broadening of jets

Need: tracking or Hadron Calorimeter and EMCal (0)
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Generic expectations from energy loss

• Longitudinal modification:

– out-of-cone  energy lost, suppression of yield, di-jet energy 

imbalance

– in-cone  softening of fragmentation

• Transverse modification

– out-of-cone  increase acoplanarity kT

– in-cone  broadening of jet-profile

l

kT~mEjet

fragmentation

after energy loss?
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Modified fragmentation functions
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Fragmentation function

‘Hump-backed plateau’

Expect softening of fragmentations: fewer fragments at high pT, more at low pT
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Jet shapes

Energy distribution 

in sub-jets

Energy loss changes radial 

distribution of energy

Several ‘new’ observables considered 

Discussion: sensitivity  viability … ongoing
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Fixing the parton energy with g-jet events
T. Renk, PRC74, 034906

g-jet: know jet energy  sensitive to P(E)

RAA insensitive to P(E)

Nuclear modification factor

Away-side spectra in g-jet

Eg = 15 GeV

Away-side spectra for g-jet 

are sensitive to P(E)

g
Input energy loss distribution
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IAA(zT) =
DAA (zT)

Dpp (zT)

Direct-g recoil suppression

Large suppression for 

away-side: factor 3-5

Reasonable agreement 

with model predictions

g

8 < ET,g < 16 GeV
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NB: gamma pT = jet pT still not very large
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Thermal photons
P

H
E

N
IX

, P
R

L
 1

0
4

, 1
3

2
3

0
1

Idea: hot quark-gluon matter 

radiates photons which escape

Difficult measurement:

• Large background 0 → gg

• Thermal photons at low pT

Excess of photons seen at RHIC
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Jet reconstruction algorithms

Two categories of jet algorithms:

• Sequential recombination kT, anti-kT, Durham

– Define distance measure, e.g. dij = min(pTi,pTj)*Rij

– Cluster closest

• Cone

– Draw Cone radius R around starting point

– Iterate until stable h,jjet = <h,j>particles

For a complete discussion, see: http://www.lpthe.jussieu.fr/~salam/teaching/PhD-courses.html

Sum particles inside jet 
Different prescriptions exist, most natural: E-scheme, sum 4-vectors

Jet is an object defined by jet algorithm

If parameters are right, may approximate parton
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Collinear and infrared safety
Illu
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Jets should not be sensitive to soft effects 

(hadronisation and E-loss)

- Collinear safe

- Infrared safe
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Jet finding in heavy ion events
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STAR preliminary

~ 21 GeV

FastJet:Cacciari, Salam  and Soyez; arXiv: 0802.1188
http://rhig.physics.yale.edu/~putschke/Ahijf/A_Heavy_Ion_Jet-Finder.html

Jets clearly visible in 

heavy ion events at RHIC

Use different algorithms to estimate systematic uncertainties:

• Cone-type algorithms 
simple cone, iterative cone, infrared safe SISCone

• Sequential recombination algorithms
kT, Cambridge, inverse kT

Combinatorial background

Needs to be subtracted
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Jet finding with background

By definition: all particles end up in a jet

With background: all h-j space filled with jets

Many of these jets are ‘background jets’
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Background subtraction

STAR Preliminary

multiplicity
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Background density at RHIC:

60-100 GeV

Strong dependence on centrality

Fluctuations remain after subtraction:

RMS up to 10 GeV
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Jets at LHC

LHC: jet energies up to ~200 

GeV in Pb+Pb from

1 ‘short’ run

Large energy asymmetry 

observed for central events
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Jets at LHC
Centrality
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Jet-energy asymmetry Large asymmetry seen 

for central events

N.B. only measures reconstructed di-jets
Does not show ‘lost’ jets

Large effect on recoil: qualitatively consistent with RHIC jet IAA

Energy losses: tens of GeV, ~ expected from BDMPS, GLV etc

beyond kinematic reach at RHIC
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Jets at LHC
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CMS sees similar asymmetries
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Summary

• Hard processes can be used to probe quark-gluon 
matter

• So far: main focus on energy loss of (leading) high-pT

hadrons
– Integrates over initial energy, energy-loss

• For radiative energy loss expect E  L2

– Di-hadron recoil suppression confirms this

– Azimuthal dependence of energy loss (v2 at high pT) not yet 
quantitatively understood

• Future directions: better handle on initial parton 
energy
– Jet finding

– g-jet
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Extra slides
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Hard probes of QCD matter

Use the strength of pQCD to explore QCD matter

Hard-scatterings produce ‘quasi-free’ partons
 Initial-state production known from pQCD
 Probe medium through energy loss

Heavy-ion collisions produce
‘quasi-thermal’ QCD matter

Dominated by soft partons 
p ~ T ~ 100-300 MeV

Sensitive to medium density, transport properties
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Toy model RAA

This is a cartoon!

Hadronic, not partonic energy loss

No quark-gluon difference

Energy loss not probabilistic P(E)

Ball-park numbers: E/E ≈ 0.2, or E ≈ 2 GeV

for central collisions at RHIC

0 spectra Nuclear modification factor
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Note: slope of ‘input’ spectrum changes with pT: use experimental reach to exploit this
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Collinear safety

Note also: detector effects, 

such as splitting clusters in calorimeter (0 decay)
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Infrared safety

Infrared safety also implies robustness 

against soft background in heavy ion collisions
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Shockwave/Mach Cone

Gyulassy et al

arXiv:0807.2235

T. Renk, 
J. Ruppert 

B. Betz, QM09, PRC79, 034902

Mach-cone/shockwave in 

the QGP?

Exciting possibility!

Are more mundane possibilities ruled out?

– Not clear yet

Proves that QGP is really 

‘bulk matter’

Measure speed of sound?
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Jet broadening II

Diffuse broadening Hard radiation/splitting

Qualitatively, two different possible scenarios

Different measurements:

- R(0.2/0.4)

- Transverse jet profile

May have different sensitivities

Interesting idea: sub-jet structure; so far no studies available

Radiated energy 

‘uniformly’ distributed 

Radiated energy

directional
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Determining the medium density

PQM (Loizides, Dainese, Paic),

Multiple soft-scattering approx (Armesto, Salgado, Wiedemann)

Realistic geometry

GLV (Gyulassy, Levai, Vitev), 

Opacity expansion (L/l), 

Average path length

WHDG (Wicks, Horowitz, Djordjevic, Gyulassy)

GLV + realistic geometry

ZOWW (Zhang, Owens, Wang, Wang) 

Medium-enhanced power corrections (higher twist) 

Hard sphere geometry

AMY (Arnold, Moore, Yaffe) 

Finite temperature effective field theory (Hard Thermal Loops)

For each model:

1. Vary parameter and predict RAA

2. Minimize 2 wrt data

Models have different but ~equivalent 

parameters:

• Transport coeff. 

• Gluon density dNg/dy

• Typical energy loss per L: e0

• Coupling constant S

q̂

PHENIX, arXiv:0801.1665,

J. Nagle WWND08
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Medium density from RAA

PQM    <q> = 13.2          GeV2/fm 
+2.1

- 3.2
^

GLV    dNg/dy = 1400          
+270

- 150

WHDG    dNg/dy = 1400          
+200

- 375

ZOWW   e0 = 1.9          GeV/fm 
+0.2

- 0.5

AMY     s = 0.280           
+0.016

- 0.012

Data constrain model parameters to 10-20%

Method extracts medium density given the model/calculation

Theory uncertainties need to be further evaluated

e.g. comparing different formalisms, varying geometry

But models use different medium parameters

– How to compare the results?
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Some pocket formula results

Large differences between models

GLV/WHDG:  dNg/dy = 1400

2

1
)(

Rdy

dNg
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202.116
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T(0) = 366 MeV

PQM:                          (parton average) /fmGeV2.13ˆ
2q

3
2202.172

ˆ Tq s




 T = 1016 MeV

AMY: T fixed by hydro (~400 MeV), s = 0.297

– After long discussions, it turns out that most of these differences 

are mostly due to uncontrolled approximations in the calculations

 Best guess: the truth is somewhere in-between
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Comparing single- and di-hadron results

Armesto, Cacciari, Salgado et al.

RAA and IAA fit with similar density

Calculation uses LPM-effect, L2 dependence
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QCD : For SU(3) : 

Nc = 3

CA = 3, CF = 4/3

CF ~ strength of a gluon coupling to a quark

CA ~ strength of the gluon self coupling 

TF ~ strength of gluon splitting into a quark pair

CA/CF=9/4

Color factors
Color factors measured at LEP

4

9
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gluons radiate ~ twice more energy than quarks
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PYTHIA (by  Adam Kocoloski)

gg

qq

gq

Subprocesses and quark vs gluon

p+pbar dominantly from gluon fragmentation
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PRL 97, 152301 (2006)

STAR Preliminary, QM08

Curves: X-N. Wang et al 

PRC70(2004) 031901

Baryon & meson NMF

STAR Preliminary

Comparing quark and gluon suppression

Protons less suppressed than pions, not more

No sign of large gluon energy loss
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Quark vs gluon suppression

+ renk plot

WHDG

Renk and Eskola, PRC76,027901

GLV formalism BDMPS formalism

Quark/gluon difference larger in GLV than BDMPS

(because of cut-off effects E < Ejet?)

~10% baryons from quarks, so baryon/meson effect smaller than gluon/quark
Are baryon fragmentation functions under control?

Conclusion for now: some homework to do...
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The fine-print: background

3.0 < p
T

trig < 4.0 GeV/c

1.3 < p
T
assoc < 1.8 GeV/c

High pT: background <~ signal

8 < pT
trig < 15 GeV

pT
assoc > 3 GeV

Low pT: background >> signal

v2 modulated background

v2trig * v2assoc ~ few per cent

Background normalisation:

Zero Yield At Minimum

N.B. no signal-free region at low pT
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v3 in Hydro

Schenke, Jeon, Gale, PRL 106, 042301

Evolution of initial state spatial anisotropy depends on viscosity
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v3 vs eps

v3 from AMPT S
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Initial triangular anysotropy gives rise to v3

in both parton cascade and hydrodynamics

v3 can be the underlying mechanism for both ‘ridge’ and ‘Mach cone’
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Modelling azimuthal dependence
A. Majumder, PRC75, 021901

RAA

pT (GeV) pT (GeV)

RAA

RAA vs reaction plane sensitive to geometry model
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pQCD illustrated
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CDF, PRD75, 092006

jet spectrum ~ 

parton spectrum
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RAA vs reaction plane angle

Azimuthal modulation, path length 

dependence largest in ASW-BDMPS

Data prefer ASW-BDMPS

But why? – No clear answer yet
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Interpreting di-hadron measurements

Scenario I:

Some lose all, 

Some lose nothing

Scenario II:

All lose something 

Di-hadron measurement:

Away-side yield is (semi-)inclusive, so does not 

measure fluctuations of energy loss

Multi-hadron measurements potentially more sensitive

All is encoded in energy loss distribution P(E)
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A closer look at azimuthal peak shapes

No away-side broadening:

- No induced radiation

- No acoplanrity (‘multiple-scattering’)

f


jet
T

cs p
N

dz

dE 2

8


Induced acoplanarity (BDMPS):

Vitev, hep-ph/0501225

Broadening due to fragments 

of induced radiation

8 < pT(trig) < 15 GeV/c

pT(assoc)>6 GeV
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Fragmentation functions

Qualitatively: )()()( zDEPzD vacmed


Fragmentation functions sensitive to P(E)

Distinguish GLV from BDMPS?
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Parton energy loss and RAA modeling

Qualitatively:

)/()( , jethadrT

jetshadrT

EpDEP
dE

dN

dp

dN


`known’ from e+e-known

pQCDxPDF
extract

Parton spectrum Fragmentation (function)Energy loss distribution

medium effect

Medium effect P(E) is only part of the story

Parton spectrum and fragmentation function are steep

 non-trivial relation between RAA and P(E)


