STAR ### Why v_n Matters & What It Means 1/S dN ch/dy $$N_{pairs} \propto 1 + 2v_1^2 \cos \Delta \varphi + 2v_2^2 \cos 2\Delta \varphi + 2v_3^2 \cos 3\Delta \varphi + 2v_4^2 \cos 4\Delta \varphi + \dots$$ Kowalski, Lappi and Venugopalan, Phys.Rev.Lett. 100:022303 K. Werner, Iu. Karpenko, K. Mikhailov, T. Pierog, arXiv:11043269 Fluctuations imply odd terms aren't necessarily zero and v_n^2 vs. n will provide information about the system like lifetime, viscosity, etc. A.P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, Phys. Rev. C77: 064902, 2008 P. Sorensen, WWND, arXiv:0808.0503 (2008); J. Phys. G37: 094011, 2010 ### Why v_n Matters & What It Means $$N_{pairs} \propto 1 + 2v_1^2 \cos \Delta \varphi + 2v_2^2 \cos 2\Delta \varphi + 2v_3^2 \cos 3\Delta \varphi + 2v_4^2 \cos 4\Delta \varphi + \dots$$ Kowalski, Lappi and Venugopalan, Phys.Rev.Lett. 100:022303 K. Werner, Iu. Karpenko, K. Mikhailov, T. Pierog, arXiv:11043269 ### Analogous to the Power Spectrum extracted from the Cosmic Microwave **Background Radiation** A.P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, Phys. Rev. C77: 064902, 2008 P. Sorensen, WWND, arXiv:0808.0503 (2008); J. Phys. G37: 094011, 2010 ### **Correlation Landscape at RHIC** The correlation landscape -is rich in information- on jets, jet modification, transport, early-times, and space-momentum correlations like flow The understanding of higher harmonic v_n^2 is central to understanding the meaning of the correlations landscape in heavy ion collisions - P. Sorensen, arXiv:0808.0503; J. Phys. G37: 094011, 2010; - B. Alver, G. Roland Phys. Rev. C81:054905, 2010; - B. Alver, Gombeaud, Luzum, Ollitrault, Phys.Rev.C82:034913,2010 - P. S., A. Mocsy, B. Bolliet, Y. Pandit, arXiv:1102.1403 We'll use correlations to extract the power spectrum from heavy-ions and investigate it's possible relationship to the early times ## Higher v_n from 2 Particle Correlations n=1 shows large difference between LS and CI: charge and momentum conserv? n=3 exhibits effects of elliptic overlap geometry n=4 and larger show 1/N dependence typical of non-flow correlations Q-Cumulants: A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011) ### Higher v_n from 4 Particle Correlations v₄ from mixed harmonics is within errors of $v_4^4\{4\}$: $v_4 \sim v_2^2 \sim 0.1^2$ v_n {4} consistent with zero for odd terms. Consistent with v_3^2 {2} being due to nonflow and/or with $v_n \propto \varepsilon_{n,part}$: for $v_n \propto \varepsilon_{n,part}$, $v_n \{4\} \propto \varepsilon_{n,std}$ > R.S. Bhalerao and J-Y.Ollitrault, Phys.Lett.B641:260-264 (2006) S. Voloshin, A. Poskanzer, A. Tang, G. Wang, Phys.Lett.B659:537-541 (2008) For 0-2.5% central v₂{4}≈0 indicates elliptic shape is nearly gone. We'll look at the shape of $v_n^2\{2\}$ vs. n for nearly symmetric collisions ### v_n^2 {2} vs n for 0-2.5% Central v_n {4} is zero for 0-2.5% central: look at v_2 {2} vs n to extract the power spectrum in nearly symmetric collisions Fit by a Gaussian except for n=1. The width can be related to length scales like P. Staig and E. Shuryak, arXiv:1008.3139 [nucl-th] mean free path, acoustic horizon, $1/(2\pi T)$... A. Mocsy, P. S., arXiv:1008.3381 [hep-ph] A. Adare [PHENIX], arXiv:1105:3928 Integrates all Δη within acceptance: we can look more differentially to assess non-flow ### **Large Δη a**_nnecy spectrum if flow dominates the correlations a_n≈v_n² $$R_{2} = \frac{\rho_{12}}{\rho_{1}\rho_{2}} - 1$$ (c) 0-5% STAR Preliminary 0.004 0.002 1 0.002 \rightarrow Fourier Tr. (0.7< $\Delta\eta$ <2.0) \rightarrow See also: A. Mocsy, P. S., arXiv:1008.3381 [hep-ph] ### **An Interesting Feature From Models** In models where space-momentum correlations develop, the initial density fluctuations manifest in momentum space For b=0 fm, at low p_T , v_n drops with n At intermediate p_T , $v_3 > v_2$ suggesting a local maximum of the power spectrum at n=3: already seen in $v_n^2/\epsilon^2_{part,n}$ from mid-central STAR data J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 97, 162301 (2006) ### **Correlations at Intermediate p**_T v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric For 0-1% central, n=3 double hump is present on the away-side without v₂ subtraction We see effects consistent with expectations, we'll investigate further by looking at various measurements related to v_n ### Correlations at Intermediate p_T v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric Trigger p_T>4-6 GeV and associate hadron p_T>1.5 GeV (Trigger is highest p_T particle in the event) Interesting structure is also seen in **raw** correlations for non-pion triggers (mostly protons) at $\Delta \eta > 0.7$ We see effects consistent with expectations, we'll investigate further by looking at various measurements related to v_n ### Non-flow or Flow v_2 subtracted di-hadron correlations: v_2 estimated using $\Psi_{FP}(2.8 < |\eta| < 3.8)$ Subtracting v₂ measured relative to the event-plane at large η leads to residual structure: adding v₃ doesn't account for residual There could be a $\Delta\eta$ -dependence to $\langle\Psi_{EP,1}^{\bullet}\Psi_{EP,2}\rangle$ and/or these structures are non-flow Dusling, Gelis, Lappi & Venugopalan, Nucl. Phys. A 836, 159 (2010); Petersen, Greiner, Bhattacharya & Bass, arXiv:1105.0340 M. Luzum, Phys.Rev.C83:044911,2011 v₂{EP} measured with a forward event plane could underestimate the v₂ for dihadrons at smaller $\Delta \eta$. Let's look at the $\Delta \eta$ dependence of v_3 from a Fourier Trans. of 2 particle correlations ## $v_3^2\{2\}$ vs $\Delta \eta$ and Non-flow Initial state density correlations may drop with Δy : interesting physics $\sigma_{\Delta y} \sim 1/\sigma_s$? Dusling, Gelis, Lappi & Venugopalan, Nucl. Phys. A 836, 159 (2010) Petersen, Greiner, Bhattacharya & Bass, arXiv:1105.0340 Fit with a wide and a narrow peak. Wide peak amplitude first drops with 1/N but then deviates from trend near N_{part} =50. Above that it follows an $N_{part}\epsilon_{3,part}^2$ trend Is the wide Gaussian non-flow as in previous interpretations* and/or $\Delta \eta$ dependence of initial density fluctuations? * Trainor, Kettler RefInt.J.Mod.Phys.E17:1219,2008 ### STAR ## v_3^2 at Large $\Delta \eta$ Centrality variable L estimates the transverse size of the system v_3^2 for Δη>0.6 rises then falls with centrality as the overlap shape becomes symmetric. Similar to v_2 Almond shape of the overlap area appears to couple to n=3 n=3 D. Teaney, L. Yan, arXiv:1010.1876 [nucl-th] P. S., A. Mocsy, B. Bolliet, Y. Pandit, arXiv:1102.1403 ## v_3 and $(v_3/v_2)^2$ vs centrality and p_T v_3 {2} using separate η ranges: η_1 <-0.5 and η_2 >0.5 See Poster: Li Yi 520, board #33 For central collisions at intermediate p_T , $v_3\{2\} \ge v_2\{2\}$: what non-flow source would give such a behavior? Weak $v_3\{2\}$ centrality dependence & $v_3 \ge v_2$ in central were predicted by models based on initial state density inhomogeneity \Rightarrow leading explanation # v₃²/ε²_{3,part} vs Beam Energy Analysis based on Q-Cumulants for all charges and -1< η <1 $v_3^2/\epsilon^2_{3,part}$ follows a simple trend with N_{part} : consistent with fits to $v_3^2\{2\}$ vs $\Delta\eta$ Slope of $v_3^2/\epsilon^2_{3,part}$ is increasing with beam energy: what about the difference between $v_2^2\{2\}$ - $v_2^2\{4\}$ # $v_2\{2\}^2$, $v_2\{4\}^2$ and $v_2\{2\}^2$ - $v_2\{4\}^2$ vs Energy $v_2^2\{2\}-v_2^2\{4\}\approx\delta+2\sigma_v^2$ also shows an intriguing energy dependence: rise of jets or increase in conversion of initial anisotropy into momentum space? Possible sensitivity to EOS needs to be further investigated Data at 5, 19.6 (taken) and 27 GeV are needed ### **Conclusions** We presented the 2 & 4 particle cumulants for v_n up to n=6: results are consistent with $v_n \propto \epsilon_{part,n}$ and/or non-flow Indications of higher harmonic flow seen in RAW dihadron correlations (consistent with initial density fluctuation models) We examined the $\Delta \eta$ dependence of $v_3^2\{2\}$ and decomposed it into a narrow and wide Gaussian: the centrality evolution of the amplitude of the wide Gaussian follows N_{part}ε²_{part,n} In central collisions, $v_3\{2\}$ at intermediate p_T becomes larger than v₂{2} also consistent with models of fluctuating initial conditions Data appear to favor v²_n∝ε²_{part,n} and non-negligible higher harmonics; where v²_n drops with n as a Gaussian. Other non-flow interpretations are also being pursued ### **An Interesting Feature From Models** In a system where space-momentum correlations develop, the initial density fluctuations appear to manifest in momentum space For b=0 fm, at low p_T , v_n drops with n At intermediate p_T , $v_3 > v_2$ suggesting a local maximum of the power spectrum at n=3: already seen in $v_n^2/\epsilon^2_{part,n}$ taken with STAR data