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1 Abstract
We study the interaction between the chiral and decon-
finement transitions using the Polyakov extended linear
sigma model and the Nambu-Jona-Lasinio model. In this
work we consider fermions in higher representations of
both SU(2) and SU(3) gauge groups. Our results moti-
vate further studies of these theories on the lattice and
they are also relevant for models of electroweak sym-
metry breaking utilizing new strong dynamics, and their
cosmological consequences [1]. We find that for different
fermion representations the qualitative and quantitative
behaviour of the order parameters is compatible with the
general expectations based on the global symmetries of
the underlying theory [2].

2 The models
In this work, we consider the PLSM and PNJL models to de-
scribe the interplay of deconfinement and chiral symmetry in
two-color QCD. We use the same kind of model setup as in
our previous work with QCD [3, 4, 5]. The PLSM model con-
sists of the linear sigma model, a Polyakov loop potential and
an interaction between the two. The PNJL model is similar
with the chiral part of the Lagrangian now corresponding to
the NJL model. Here we merely state the form for the grand
potential of the models
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for the PNJL model.
The Polyakov loop is included to both models through the
mean field potential U`, for which we choose the form
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and the constants ai,b3 are fitted to reproduce pure gauge
lattice data with the a transition temperature T0 = 268 MeV.

Here `F is the gauge invariant Polyakov loop in the funda-
mental representation and we consider only the mean field
potential of the fundamental loop. Finally there are the in-
teractions between the Polyakov loop and chiral degrees of
freedom given by the interaction potential Ωq̄q .
The form of the interaction potential depends on the fermion
representation and in this work we consider the fundamen-
tal and the adjoint representations. In the fundamental rep-
resentation

Ωq̄q = −4T

∫
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and in the adjoint representation
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.

In the adjoint case the naturally arising adjoint loop `A is
written in terms of the fundamental loop `F , `A = (4`2F −
1)/3.
In the PNJL model interaction potential we also include the
vacuum contribution regulated by a cutoff

−4DimR
∫

d3p

(2π)3
Eθ(Λ2 − |~p|2),

where DimR is the dimension of the fermion representation.
The thermodynamics of the models can be determined by
minimizing the grand potential Ω with respect to the con-
stituent mass M and the fundamental Polyakov loop `F .

3 Parameter setting
The two models used here approximate QCD equally well,
although there are quantitative and also some qualitative
differences [3, 4, 5]. To set the model parameters in the chi-
ral sector of the two-color case, we start from the param-
eter values used to describe QCD and scale them accord-
ingly. In this work we use a simple scaling in which the
pion decay constant is assumed proportional to

√
Nc and

the pion and sigma masses are essentially constant. This
scaling has been recently used e.g. in [6]. The parameters of
the Polyakov potential are fitted to SU(2) lattice data from
[7]. The parameters used are shown in the table below.

LSM parameters for SU(2) fundamental
fπ mπ mσ g

75.9 MeV 137 MeV 598 MeV 3.9
NJL parameters for SU(2) fundamental
m0 Λ G

5.0 MeV 678 MeV 13.31 (GeV)−2

Polyakov potential parameters for SU(2)
a0 a1 a2 b3

1.19 -1.136 7.94 -2.759

Switching from the fundamental representation to the ad-
joint will require some additional adjustment of the param-
eters. For the PNJL model a scaling based on the the Fiertz
transformation properties of the current–current interac-
tion was presented in [8]: the adjoint four–fermion cou-
plingGA is related to the fundamental couplingG through
the relation

GA

GF
=

2N3
c

(N2
c − 1)2

.

Because the linear sigma model deals with mesons directly,
an analogous argument cannot be used. Instead, here we
use the PNJL model as a guide and set the PLSM parame-
ters fπ , mπ , mσ and g to values that we obtain using the
PNJL model. Below are the corresponding parameter val-
ues for the adjoint fermion case.

LSM parameters for SU(2) adjoint
fπ mπ mσ g

96.3 MeV 179 MeV 2811 MeV 14.6
NJL parameters for SU(2) adjoint

m0 Λ G
5.0 MeV 678 MeV 23.66 (GeV)−2

4 Model comparison
Using the described parameter setting scheme, we compare the PLSM and PNJL model predictions for the temperature de-
pendence of the chiral and deconfinement order parameters in SU(2). In the figures below the normalised chiral condensate
and the fundamental Polyakov loop are shown for both models in the two fermion representations. In the fundamental
fermion case (left figure) the behaviour of the two models is almost identical with QCD results: The qualitative behaviour
of the models is similar with only a slight quantitative difference near the phase transition region, mainly in the chiral sec-
tors of the models. With adjoint fermions (right figure) the situation is somewhat different: The qualitative picture given
by both models includes a sharp first order phase transition in the chiral sector which also induces a similar transition to
the Polyakov sector, but now the quantitative difference between the models is larger. This may not be suprising since the
overall scale of the chiral order parameters increases in switching from the fundamental to the adjoint representation.
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Since there are differences between the models and it is not completely clear what is the right prescription to set up the
models in the different representations of SU(2), we take a look on how the chiral transition temperature is affected by
tuning th PLSM parameters. In the two figure below we have varied the PLSM parameters g and mσ . The coupling g is
basically the ratio of the constituent mass and the chiral condensate, M = g〈q̄q〉. In the figures g is plotted on the x–axis
and scaled by g0, which corresponds to a constituent mass given by the PNJL model. The other parameter mσ is directly
related to the PLSM coupling λ and is represented with blue and red data points in the figures. As one can see the transition
temperature of the PLSM model can be made to agree with the PNJL model by increasing mσ or decreasing g. With the
current setup this will however lead to different constituent and sigma masses in the models.
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