The spectrum of initial fluctuations in the little Bang

Raju Venugopalan Brookhaven National Laboratory

Ab initio approach to heavy ion collisions

- ☐ Compute properties of relevant degrees of freedom of wave fns. in a systematic framework (as opposed to a "model")?
- ☐ How is matter formed? What are its non-equilibrium properties & lifetime?
 Can one "prove" thermalization or is the system "partially" thermal?
- When is hydrodynamics applicable? How much jet quenching occurs in the Glasma? Are there novel topological effects (sphaleron transitions?)

Ab initio approach to heavy ion collisions

Talk Theme:

- i) Even though the paradigm is classical, quantum (NLO+...) fluctuations absolutely essential for our understanding
- ii) Some quantum modes are essential to understand energy evolution of wave-fns; others grow exponentially after the collision
- iii) Isolating, factorizing, resumming, quantum fluctuations can be done systematically in a *weak coupling* (albeit non-perturbative) framework

Gluon Saturation in a nucleus: classical coherence from quantum fluctuations

Wee parton fluctuations time dilated on strong interaction time scales

Gluon Saturation in a nucleus: classical coherence from quantum fluctuations

Wee parton fluctuations time dilated on strong interaction time scales

The gluon density saturates at a maximal value of $\sim 1/\alpha_S \rightarrow gluon$ saturation

Large occupation # => classical color fields

Many-body high energy QCD: The Color Glass Condensate

Gelis, Iancu, Jalilian-Marian, RV: Ann. Rev. Nucl. Part. Sci. (2010), arXiv: 1002.0333

QCD light front EFT framework of static light front color sources ρ^a and dynamical gauge fields A^a_{...}

 $\langle \mathcal{O} \rangle_Y = \int [d\rho] W_Y[\rho] \mathcal{O}$

Require observables be independent of separation of fast (large x) & slow (small x) modes: functional RG for "density matrices" W[ρ]

$$\frac{\partial W_Y[\rho]}{\partial Y} = \mathcal{H}[\rho] \, W_Y[\rho]$$

- ◆ JIMWLK Hamiltonian-describes "Fokker-Planck" −like evolution of multi-parton (Wilson line) correlators
- can be solved by Langevin techniques on 2+1-D lattices
- NLL corrections (see talks by Albacete, Kovchegov and Chirilli)

THE LITTLE BANG

How can we compute multiparticle production *ab initio* in HI collisions?

-perturbative VS non-perturbative,

Always non-perturbative for questions of interest in this talk!

strong coupling VS weak coupling

AdS/CFT? Interesting set of issues... not discussed here

Quantum decoherence from classical coherence

Glasma (\Glahs-maa\): Noun: non-equilibrium matter between CGC & QGP

Computational framework

Schwinger-Keldysh formalism: for strong time dependent sources ($\rho \sim 1/g$), computation of inclusive quantities can be formulated as an *initial value problem*

Power counting:

Gelis,RV NPA (2006)

- \triangleright LO: O(1/g²) but all multiple scatterings (gp)ⁿ
- > NLO: O(1) but all multiple scatterings (gρ)ⁿ

Spoiler alert: divergent contributions in rapidity and proper time modify power counting at NLO: these have to be resummed

The Glasma at LO: Yang-Mills eqns. for two nuclei

 $O(1/g^2)$ and all orders in $(g\rho)^n$

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_{1}^{a}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_{2}^{a}(x_{\perp})\delta(x^{+})$$

Glasma initial conditions from matching classical CGC wave-fns on light cone

Kovner, McLerran, Weigert; Krasnitz, RV; Lappi

The Glasma at LO: Yang-Mills eqns. for two nuclei

 $O(1/g^2)$ and all orders in $(g\rho)^n$

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_1^a(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_2^a(x_{\perp})\delta(x^{+})$$

Glasma initial conditions from matching classical CGC wave-fns on light cone

Kovner, McLerran, Weigert; Krasnitz, RV; Lappi

$$abla \cdot E = \rho_{\text{electric}}$$
 $abla \cdot B = \rho_{\text{magnetic}}$

The Glasma at LO: Yang-Mills eqns. for two nuclei

 $O(1/g^2)$ and all orders in $(g\rho)^n$

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_{1}^{a}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_{2}^{a}(x_{\perp})\delta(x^{+})$$

Glasma initial conditions from matching classical CGC wave-fns on light cone

Kovner, McLerran, Weigert; Krasnitz, RV; Lappi Lappi, Srednyak, RV (2010)

$$\nabla \cdot E = \rho_{\mathrm{electric}}$$

$$\nabla \cdot B = \rho_{\text{magnetic}}$$

 $\mathbf{x}^{\Lambda} = \mathbf{\alpha}_{-}^{(1)} \mathbf{i} \qquad \mathbf{A}_{-}^{(2)} = \mathbf{\alpha}_{-}^{(2)} \mathbf{i}$ $\mathbf{A}_{-}^{(1)} = \mathbf{\alpha}_{-}^{(1)} \mathbf{i} \qquad \mathbf{A}_{-}^{(2)} = \mathbf{\alpha}_{-}^{(2)} \mathbf{i}$

$$\rho_{\text{electric}} = ig[A^i, E^i]$$

$$\rho_{\text{magnetic}} = ig[A^i, B^i]$$

Boost invariant flux tubes of size with || color E & B fields -generate Chern-Simons charge but no large topological transitions

Sphaleron transitions generated by rapidity-dependent quant.

fluctuations

Kharzeev Krasnitz RV Phys Lett B545 (2002)

Kharzeev, Krasnitz, RV, Phys. Lett. B545 (2002) Fukushima, Kharzeev, Warringa (2010)

Factorization of quantum fluctuations

O(1) and all orders in $(g\rho)^n$

Divergent contributions at NLO in rapidity in the respective nuclei can be factorized

Initial value problem in Schwinger-Keldysh

Gelis, Lappi, RV (2008, 2009)

$$\mathcal{O}_{\mathrm{NLO}} = \left[\frac{1}{2} \int_{\vec{u}, \vec{v}} \mathcal{G}(\vec{u}, \vec{v}) \, \mathcal{T}_u \mathcal{T}_v + \int_{\vec{u}} \beta(\vec{u}) \, \mathcal{T}_u \right] \mathcal{O}_{\mathrm{LO}}$$

 $\mathcal{G}(ec{u},ec{v})$ and $eta(ec{u})$ can be computed on the initial Cauchy surface $\mathcal{T}_u = rac{\delta}{\delta A(ec{u})}$ linear operator on initial surface

$$\mathcal{T}_u = rac{\sigma}{\delta A(ec{u})}$$
 linear operator on initial surface

Factorization of quantum fluctuations

O(1) and all orders in $(g\rho)^n$

Divergent contributions at NLO in rapidity in the respective nuclei can be factorized

Initial value problem in Schwinger-Keldysh

Gelis, Lappi, RV (2008, 2009)

$$\mathcal{O}_{\mathrm{NLO}} = \left[\frac{1}{2} \int_{\vec{u}, \vec{v}} \mathcal{G}(\vec{u}, \vec{v}) \, \mathcal{T}_u \mathcal{T}_v + \int_{\vec{u}} \beta(\vec{u}) \, \mathcal{T}_u \right] \mathcal{O}_{\mathrm{LO}}$$

$$\mathcal{G}(ec{u},ec{v})$$
 and $eta(ec{u})$ can be computed on the initial Cauchy surface $\mathcal{T}_u = rac{\delta}{\delta A(ec{u})}$ linear operator on initial surface

Contributions across both nuclei are finite-no log divergences => JIMWLK factorization

$$\mathcal{O}_{\mathrm{NLO}} = \left[\ln \left(\frac{\Lambda^+}{p^+} \right) \mathcal{H}_1 + \ln \left(\frac{\Lambda^-}{p^-} \right) \mathcal{H}_2 \right] \mathcal{O}_{\mathrm{LO}}$$

Factorization in the Glasma

$$T_{
m LO}^{\mu
u}=rac{1}{4}g^{\mu
u}F^{\lambda\delta}F_{\lambda\delta}-F^{\mu\lambda}F_{\lambda}^{
u} \quad {
m o}\left(rac{Q_S^4}{g^2}
ight)$$

 ϵ =20-40 GeV/fm³ for τ =0.3 fm @ RHIC

$$\langle T^{\mu\nu}(\tau,\underline{\eta},x_{\perp})\rangle_{\text{LLog}} = \int [D\rho_1 d\rho_2] W_{Y_1}[\rho_1] W_{Y_2}[\rho_2] T_{\text{LO}}^{\mu\nu}(\tau,x_{\perp})$$
$$Y_1 = Y_{\text{beam}} - \eta \; ; \; Y_2 = Y_{\text{beam}} + \eta$$

Glasma factorization => universal "density matrices W" ⊗ "matrix element"

Evolution of quantum fluctuations in the Glasma

- Rapidity divergent quantum fluctuations are p_n=0 modes
 - integral to coherence of the nuclei before the collisions
- **□** What about $p_n \neq 0$ modes that are generated at the instant of the collision?

The problem of thermalization

- Large v_2 –elliptic flow appears to require early thermalization/perfect fluidity ($\eta/s^1/4\pi$).
- lacksquare But kinetic theory gives $au_{
 m therm.} \sim rac{1}{lpha_S^2} rac{1}{Q_S} >> rac{1}{Q_S}$
- Our weak coupling (non-perturbative!) framework leads to hydrodynamic behavior outside the framework of kinetic theory.
- Treatment similar to enhancement of quantum fluctuations due to parametric resonances during inflation

 Kofman, Linde, Starobinsky Micha, Tkachev

From Glasma to Plasma

0.001

0.0001 1e-05

1e-06

1e-07 1e-08

1e-09

1e-10

 $\max \tau P_{L}(\tau, v)/g^{4}\mu^{3}L_{\eta}$

Romatschke, RV Fukushima, Gelis, McLerran

increasing

seed size

Quant. fluct. grow exponentially

Recall...

For
$$\mathbf{p_{\eta}} \neq \mathbf{0}$$
 modes: $\mathbf{T}_u \mathcal{A}(x) \sim \frac{\delta \mathcal{A}(x)}{\delta \mathcal{A}(0,y)} \sim \exp\left(\sqrt{Q_s \tau}\right)$

$$lacksquare$$
 Resummation of secular divergences $\left[g\exp\left(\sqrt{Q_S au}
ight)
ight]^n$

Spectrum of initial fluctuations

Dusling, Gelis, RV (2011)

$$\mathcal{G}^{\mu\nu} = \int \frac{d^{3}k}{(2\pi)^{3}2E_{k}} a^{\mu}_{-k}(\vec{u}) \ a^{\nu}_{+k}(\vec{v})$$
$$\left[\frac{\delta^{2}S_{\text{YM}}}{\delta A^{\mu}A^{\nu}}\right]_{\substack{A=A_{\text{cl}}\\ x^{0}\to -\infty}} a^{\nu}_{\pm k,\lambda a}(x) = \epsilon^{\mu}(k) \ T^{a} \ e^{\pm ik\cdot x}$$

Spectrum of initial fluctuations

$$\mathcal{G}^{\mu\nu} = \int \frac{d^3k}{(2\pi)^3 2E_k} a^{\mu}_{-k}(\vec{u}) \ a^{\nu}_{+k}(\vec{v}) \\ \left[\frac{\delta^2 S_{\text{YM}}}{\delta A^{\mu} A^{\nu}} \right]_{\substack{A = A_{\text{cl}} \\ x^0 \to -\infty}} a^{\nu}_{\pm k, \lambda a}(x) = \epsilon^{\mu}(k) \ T^a \ e^{\pm ik \cdot x}$$

Higher orders:

$$(g\exp(\sqrt{Q_S\tau}))^4 \sim O(1)$$

$$g(g\exp(\sqrt{Q_S\tau}))^3 \sim O(g)$$

Spectrum of initial fluctuations

Dusling, Gelis, RV (2011)

$$T_{\text{resum}}^{\mu\nu} = \exp\left[\frac{1}{2} \int_{\tau=0^{+}} d^{3}u \ d^{3}v \ G(u, v) \cdot \mathcal{T}_{u} \mathcal{T}_{v}\right] T_{\text{LO}}^{\mu\nu}$$

$$= \int [da_{0}(u)] F_{\text{init}}[a_{0}] T_{\text{LO}}[A_{\text{cl}} + a_{0}]$$

$$\propto \exp\left[-\frac{1}{2} \int_{\tau=0^{+}} d^{3}u \ d^{3}v \ a_{0}(u) (G^{\mu\nu})^{-1} a_{0}(v)\right]$$

From Glasma to Plasma

Quant. fluct. grow exponentially after collision

$$\langle \langle T^{\mu\nu} \rangle \rangle_{\text{LLx+Linst.}} = \int [D\rho_1][D\rho_2] W_{\text{Y}_{\text{beam}}-\text{Y}}[\rho_1] W_{\text{Y}_{\text{beam}}+\text{Y}}[\rho_2]$$

$$\times \int [da(u)] F_{\text{init}}[a] T_{\text{LO}}^{\mu\nu}[A_{\text{cl}}(\rho_1, \rho_2) + a]$$

Path integral over multiple initializations of classical trajectories in one event can lead to quasi-ergodic

"eigenstate thermalization"

Berry; Srednicki; Rigol et al.; ...

Hydrodynamics from quantum fluctuations

Dusling, Epelbaum, Gelis, RV (2011)

"Toy" example: scalar Φ⁴ theory

Gaussian random variable $\langle c_{
u k} c_{\mu l} \rangle = 0$ $\phi(\tau, \eta, x_{\perp}) = \phi_{\text{cl.}}(\tau, x_{\perp}) + \frac{1}{2} \int \frac{d\nu}{2\pi} d\mu_k c_{\nu k} e^{i\nu\eta} \chi_k(x_{\perp}) H_{i\nu}(\lambda_k \tau) + c.c$

Satisfies the equation

$$[-\partial_{\perp}^2 + V''(\phi_0)]\chi_k = \lambda_k^2 \chi_k$$

☐ These quantum modes satisfy the criteria conjectured by Berry (and developed by others) as essential for thermalization of a quantum fluid

Hydrodynamics from quantum fluctuations

Dusling, Epelbaum, Gelis, RV (2011)

scalar Φ⁴ theory:

Energy density and pressure without averaging over fluctuations

Energy density and pressure after averaging over fluctuations

Converges to single valued relation "EOS"

Hydrodynamics from quantum fluctuations

For 1-d expansion recover $\epsilon \sim \tau^{-4/3}$ behavior of ideal hydrodynamics

Convergence with increasing g

Quasi-particle description?

Epelbaum, Gelis (2011)

- ☐ At early times, no quasi-particle description
- ☐ May have quasi-particle description at late times. Is there an effective kinetic "Boltzmann" description in terms of interacting quasi-particles at late times?

Thermalization?

- □ Possible turbulent thermalization? Or "quasi-equilibrium"?
- \Box Good fit to spectra also for $f = C/\omega \mu$ with $\mu = m$

Summary-I

- **❖** Analogous computation of small fluctuations for QCD − in preparation
- Similar structure as scalar case significantly more complex but numerically feasible
- Eventual result will contain ab initio treatment of
- ✓ Initial state: energy evolution of inclusive final states including leading logs in x (+ running coupling) + rescattering contributions
- **✓ ?** Final state: resummation of leading instability contributions to all orders
 - Powerful tool to study i) flow in the Glasma and its properties...
 - ii) possible onset of thermalization / match to strong coupling approaches
 - iii) sphaleron transitions Chiral magnetic effect ?

Summary-II

Initial state/early time energy loss at NLO and beyond

Path integral over fluctuation spectrum

All order - resummed

Gelis, RV (2006)

Probability of producing n particles in theory with sources:

LSZ:
$$\langle p_1 \cdots p_{n \text{ out}} | 0_{\text{in}} \rangle = \frac{1}{Z^{n/2}} \int \left[\prod_{i=1}^n d^4 x_i e^{i p_i \cdot x_i} \left(\partial_{x_i}^2 + m^2 \right) \frac{\delta}{i \delta \rho(x_i)} \right] e^{i \mathcal{V}[\rho]}$$

$$P_n = \frac{1}{n!} \mathcal{D}^n[j_+, j_-] \exp(iV[j_+] - iV^*[j_-]) |_{j_+ = j_- = j}$$

$$D[j_{+}, j_{-}] \equiv \frac{1}{Z} \int_{x,y} G_{+-}^{0}(x,y) (\partial_{x}^{2} + m^{2}) (\partial_{y}^{2} + m^{2}) \frac{\delta}{\delta j_{+}(x)} \frac{\delta}{\delta j_{-}(y)} \int_{(2\pi)^{3} 2E_{p}} e^{ip \cdot (x-y)}$$

Inclusive average multiplicity:

$$\langle n \rangle = \sum_n n \, P_n \equiv D \left[e^D e^{iV} e^{-iV} \right]$$

$$\langle n \rangle = \int_{x,y} Z G_{+-}^0(x,y) \left[\Gamma_+(x) \Gamma_-(y) + \Gamma_{+-}(x,y) \right]$$

$$\Gamma_{\pm}(x) = \frac{\partial_x^2 + m^2}{Z} \frac{\delta iV}{\delta j_{\pm}(x)} |_{j_+=j_-=j}$$

$$\Gamma_{+-}(x,y) = \frac{(\partial_x^2 + m^2)(\partial_y^2 + m^2)}{Z} \frac{\delta^2 iV}{\delta j_{\pm}(x)\delta j_{-}(y)}|_{j_{+}=j_{-}=j}$$