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Plan

To get here: Phenix (arXiv:1105.3928) ALICE (arXiv:1105.3865)
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Stages of Heavy lon Collisions

Hadrons to detectors

Thermal photons S
Jets propagating \\. I
High energy photons Ajetcan c . oo o
Photons are produced ~ ® r Y
—e o °®
— - Hard Scattering? —] — -
oceur at this stage, o e L4
Jets are produced ° ®
. ~ / o
ched jets come out e o "
clei are breaking u Nucleus remnant High pressure flows develope \

Nu g up
Static color charges  Classical gluon field Gluon fields are grabbing each other .
g Entropy is produced.
Pre-cquiirium mix of sraming quarks,

eluons'and classical gluon feld.

(a) (b) (©) (Y] (©)

a) Before collision

(@)
(b) Initial state - Mostly gluon field dynamics

(c) Pre-equilibrium stage - QGP forming. Jets created. Freeze-out
(d) Hydrodynamics - From ~ 0.5fm/c at RHIC. Jets propagating.
(e)

e) Hadronic stage - Hydro/Cascade — Freeze-out.
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MUSIC

MUScl for lon Collisions

MUSCL: Monotone Upstream-centered Schemes for Conservation Laws
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MUSIC

@ 3+1D parallel implementation of Kurganov-Tadmor Scheme
[Jour. of Comp. Phys. 160, 241 (2000)]
with an additional baryon current

Ideal and Viscous Hydro

°

@ Sophisticated Freeze-out surface construction

@ Full resonance decay (3+1D version of Kolbe and Heinz)
o

Many different equation of states including the newest from
Huovinen and Petreczky

Event-by-Event!
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Kurganov-Tadmor

Finite volume method for conservation laws
No need for a Riemann solver

Method of lines (i.e. a bunch of coupled O.D.E'’s) possible

o

°

°

@ Small O(]Ax|®) numerical viscosity

@ In a flat space, strictly conserves energy, momentum and charges
°

Deals with discontinuities very well
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Hydrodynamics

@ Conservation laws
9 (TH) =0

@ T# has 10 d.o.f. Cons. laws provide 4 constraints => No
dynamical content.

@ Energy density and flow vector
T*u, = —eut

@ u*: Time-like eigenvector of T#”. Normalized to u*u, = —1.
@ c: Local energy density

@ This is always possible since T#" is real and symmetric.
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Hydrodynamics

@ So far:
T =eutu” + H"
with
H"u, =0
@ This is just math. No physics input except that u* is time-like and
e >0.
@ Physics - Small scale physics is thermal —> Local equilibrium
o HM = (g" + uru”)P(e) + m[e,u] with 7#*u, =0
o ldeal Hydro: 7#* =0

e Viscous Hydro:

ol = —g (' + U — g"(2/3)V-u) — ¢g'V-u
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Solving ldeal Hydro from t to t + At

@ Solve 9y T = —9; T for TO(t + At)
@ From T%, reconstruct e and u* at t + At and P = P(e).

@ Reconstruct

TV(t+ At) = eu'v” + (g% + u'u”)P
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Viscous MUSIC

@ Right now shear viscosity only.

@ Viscosity effect implemented following H. Song’s thesis
(0908.3656)

AMAYPDrr s = _t <7r“” —2pVirum + gTﬂﬂ“V(aauo‘)>
Tn

which comes from Baier, Romatschke, Son, Starinets, Stephanov
(0712.2451) by setting other transport coefficients to zero.

@ Transverality is preserved by the evolution.
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Physics from Hydro — What are we trying to learn?

@ What is the nature of the initial condition?

@ Do we reach local equilibrium in heavy ion collisions?
@ How hotis it?

@ How viscous is QGP?

@ (Is there a phase transition? If so what kind?)
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Physics from Hydrodynamics

@ Basic hydro observable: Single particle spectrum
@ Cooper-Frye

dN;
f(u* >
T RGN
with
1 1
(27)3 e(=upu—mi)/T 4 4
and the freeze-out surface X:

14
12 \‘“\\X\!\‘\ﬂlrhf!fyl/uﬂ/
e e

f(u'p.) =

< [fm]

x [fm]
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Physics from Hydrodynamics

@ Basic hydro observable: Single particle spectrum
@ Cooper-Frye

dN;
G apr ~ 9 WP,
with
f(u'p,) = - L
” (27)3 e(=upu—mi)/T 4 4

and the freeze-out surface X:

Theory goal: Infer experimental u*, 11; and T by theoretical
calculation of single particle spectra

Note: For viscous hydro 6f = fy(1 + fy)p*p? Waﬂm
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Physics from Hydrodynamics

@ Information content of single particle spectra

dN; dN; >
= 14+ 2v; , ¥)cos(n
dy d?pr  2mprdprdy ( ; in(Pr. y) cos{ ¢))

@ “Flow”: v; n(pr)

@ Came from

e(xr,n) =e(rr,n) (1 + 226n(fr,77)003(”¢)>

n=1

@ Pressure converts it into v; 5(pr)
e History matters
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Physics from Hydrodynamics

@ Elliptic Flow

Py

Px

> (I
" NS

Spatial anisotropy ~ Pressure does ~Momentum anisotropy
the conversion
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Physics from Hydrodynamics

@ Triangular Flow

Alver and Roland Phys.Rev.C81:054905, 2010
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Physics from Hydrodynamics

@ Triangular Flow

Alver and Roland Phys.Rev.C81:054905, 2010

10
r PHOBOS Glauber MC ost
15 10 EY; 05 10
05
:Npmfgl. £,=053 ‘ 1ok
10710 0 10
x(fm) st

cos(3¢) component-only
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Why both?

@ Elliptic flow: Sensitive to the overall almond shape

@ Triangular flow: Less so. More local in the sense that average
initial condition gives zero vs.
@ Triangular flow: Expect more sensitivity to n/s. Two possible
reasons:
e Viscosity smears out lumps.
e Viscosity reduces differential flow - Triangle is “rounder” than ellipse

@ Goal: Get dN/prdpTdy, vq, v, v3 and v4 right at the same time to
constrain n/s better.
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Lumpy MUSIC

Initial condition is lumpy (Glauber with gaussian energy profile):

‘ 9 .
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Ideal hydro
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seq.mpg
Media File (video/mpeg)


E-by-E
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output.mpg
Media File (video/mpeg)


Ideal vs. Viscous

1=0.4 fm/c 1=6.0 fm/c, ideal 1=6.0 fm/c, n/s=0.16
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ideal.mpg
Media File (video/mpeg)


viscous.mpg
Media File (video/mpeg)


Get particle spectra right

(1/2m) dN/dy pr dpt

@ Hadron spectrum using EoS-Q (Azhydro) and EoS-L (Huovinen

Petreczky)
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Ideal. dN/dn for hadrons

Ideal. pr spectrum for hadrons.
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Get particle spectra right

(1/2m) dN/dy pt dpt

@ Pion spectrum using EoS-Q and EoS-L

10000 | PN 0% e, o
1000 | PN Rz e, T 1000 S :
100 fe.. z/g:liﬁgw'm ______ average hydro b=5.78 fm —_—
10 ,.,“VV T/25b=63fm ideal, 128 runs —_—
1k m-“’.v 7/150b=7.5 fm & 100 viscous 1/s=0.08, 100 runs — ]
a, < i
01t Ay, Oe. & 10
‘B, >
0.01 A )
P 1
0.001 S
Q
0.0001 | 8 o4
1e-05 = '
0 " 0.01
0.001 - - : . - :
0.5 1 15 2 25 3 3.5 4
pr[GeV]
ldeal. spectrum comparison
. ) . u i
Pion spectrum: Centrality pr sp P
dependence
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Get particle spectra right

(1/2m) dN/dy pt dpt

@ Pion spectrum using EoS-Q and EoS-L
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Flow in Ideal MUSIC (average initial condition)

@ Elliptic flow

25 . : :
STAR Au+Au 200 GeV h*" 10-20% =&~
o0 | |AuAu-1 EOS-Q h*" b=6.3 fm
AuAu-2 EOS-Q h*" b=6.3 fm
15 | [AvAu3EOSL h* b=6.3 fm — |
2
o
> 10 2 1
0
5 L 4
0 L L L
0 0.5 1 1.5 2
pr[GeV]

Elliptic flow of hadrons
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Elliptic flow: Mass dependence
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Flow in Ideal MUSIC (average initial condition)

@ Elliptic flow

STAR Auvhu 200 GeV 7 20-30% ~O PHOBOS Au+Au 200 GeV 15-25% central —e—
0Q | [smmemocestoam B t | AuAu-1 EOS-Q h*" b=6.7 fm L
STAR AU 200 Gev 510 HEH AuAu-3 EOS-L h*" b=6.7 fm —

vy (%)

vy (%)
o == N W H» OO N

Elliptic flow: Centrality dependence Elliptic flow: Rapidity dependence
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Flow in Ideal MUSIC (average initial condition)
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N 4 STAR Au+Au 200 GeV h* 20-30% O N 01 L
0.1 ¢ (P / AuAu-1 (EOS-Q) h** b=6.3fm ™= E| . i o "
/4 o ~ h*"" STAR Au+Au 200 GeV 10-20% =+
¥/ AuAu-2 (EOS-Q) h*" b=6.3 fm 4. M A
AUAU-3 (EOS-L) ™" b=6.3 fm = AuAu-2 " Lattice: 64° x 32
AuAu-1 (EOS-Q) h* b=75fm **=== AuAu-2 1 Lattice: 192° x 32
£ AU ) b7 fm — 1/ -2 1 Lattice: 3202 —
0.01 i ) _ AuAu-3 (EOS-L) h' b=7.51 0.01 ) AuAu 2 Lattice: 320 x32
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2
pr [GeV] pr [GeV]
v4: pr dependence v4: Sensitivity to the grid
orientation unless the grid is
super-fine

Jeon (McGill) An Evening with MUSIC 27/34



Viscous Lumpy MUSIC

@ v, and v5 pr dependence (Resonances up to ¢)
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Viscous Lumpy MUSIC

Resonances up to ¢
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Confronting new data

Phenix (arXiv:1105.3928)
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Confronting new data

Our predictions vs ALICE data (arXiv:1105.3865)
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MUSIC Summary

Got here!
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MUSIC Summary

@ 3+1D Ideal Hydro — Good to have several implementations
@ 3+1D Viscous Lumpy Hydro — First!

@ V3 is non-zero because initial conditions are lumpy.

@ Sophisticated Hyper-surface finding algorithm for freeze-out

@ Spectra and v, — Under control. Compares well with both RHIC
and LHC data.

@ A step towards a comprehensive simulation model of Heavy lon
Collisions
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Jets propagating inside QGP
doag
% dt /geometry /abcd

X faya(Xa, Qf)fp/8(Xb, Q)
doap—scd
at
X P(xc — x¢| T, u")
x D(z, Q)

Nucleus

This is what we need.
Jaeom P(Xe = X¢| T, u*)D(z¢, Q):
Medium modified frag. function
= P(xc — x¢| T, u*): Evolution within
Hydro background

Nucleus
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MARTINI

@ Modular Algorithm for Relativisitic Treatment of heavy IoN
Interaction

@ Propagates PYTHIA jets in MUSIC background
@ Uses leading order thermal QCD collision & radiation rates
@ Full jet reconstruction with FASTJET
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Young, Schenke, Jeon, Gale, arXiv:1103.5769
ATLAS, PRL 105 (2010) 252303

CMS, arXiv: 1102.1957 (2011
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