An Evening with MUSIC

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

Elliptic and Triangular Flows in 3+1D Viscous Hydrodynamics with Fluctuating Initial Conditions

Department of Physics McGill University Montréal, QC, CANADA

MUSIC Team

Plan

To get here: Phenix (arXiv:1105.3928) ALICE (arXiv:1105.3865)

Stages of Heavy Ion Collisions

- (a) Before collision
- (b) Initial state Mostly gluon field dynamics
- (c) Pre-equilibrium stage QGP forming. Jets created. Freeze-out
- (d) Hydrodynamics From $\sim 0.5 \, \text{fm/}c$ at RHIC. Jets propagating.
- (e) Hadronic stage Hydro/Cascade \rightarrow Freeze-out.

Stages of Heavy Ion Collisions

- (a) Before collision
- (b) Initial state Mostly gluon field dynamics
- (c) Pre-equilibrium stage QGP forming. Jets created. Freeze-out
- (d) Hydrodynamics From $\sim 0.5 \, \text{fm/}c$ at RHIC. Jets propagating.
- (e) Hadronic stage Hydro/Cascade \rightarrow Freeze-out.

MUSCL: Monotone Upstream-centered Schemes for Conservation Laws

MUSIC

- 3+1D parallel implementation of Kurganov-Tadmor Scheme [Jour. of Comp. Phys. 160, 241 (2000)]
 with an additional baryon current
- Ideal and Viscous Hydro
- Sophisticated Freeze-out surface construction
- Full resonance decay (3+1D version of Kolbe and Heinz)
- Many different equation of states including the newest from Huovinen and Petreczky
- Event-by-Event!

Kurganov-Tadmor

- Finite volume method for conservation laws
- No need for a Riemann solver
- Method of lines (i.e. a bunch of coupled O.D.E.'s) possible
- Small $O(|\Delta \mathbf{x}|^3)$ numerical viscosity
- In a flat space, strictly conserves energy, momentum and charges
- Deals with discontinuities very well

Hydrodynamics

Conservation laws

$$\partial_{\mu}\left\langle \mathcal{T}^{\mu
u}
ight
angle =0$$

- $T^{\mu\nu}$ has 10 d.o.f. Cons. laws provide 4 constraints \Longrightarrow No dynamical content.
- Energy density and flow vector

$$T^{\mu\nu}u_{\nu}=-\varepsilon u^{\mu}$$

- u^{μ} : Time-like eigenvector of $T^{\mu\nu}$. Normalized to $u^{\mu}u_{\mu}=-1$.
- ε : Local energy density
- This is always possible since $T^{\mu\nu}$ is real and symmetric.

Hydrodynamics

So far:

$$T^{\mu\nu} = \varepsilon \mathbf{u}^{\mu} \mathbf{u}^{\nu} + \mathbf{H}^{\mu\nu}$$

with

$$H^{\mu\nu}u_{\nu}=0$$

- This is just math. No physics input except that u^{μ} is time-like and $\varepsilon \geq 0$.
- Physics Small scale physics is thermal ⇒ Local equilibrium
 - $H^{\mu\nu}=(g^{\mu\nu}+u^{\mu}u^{\nu})P(\varepsilon)+\pi^{\mu\nu}[\varepsilon,u]$ with $\pi^{\mu\nu}u_{\nu}=0$
 - Ideal Hydro: $\pi^{\mu\nu}=0$
 - Viscous Hydro:

$$\pi^{ij} = -rac{\eta}{2} \left(\partial^i u^j + \partial^j u^i - g^{ij} (2/3)
abla \cdot \mathbf{u}
ight) - \zeta g^{ij}
abla \cdot \mathbf{u}$$

Solving Ideal Hydro from t to $t + \Delta t$

- Solve $\partial_0 T^{0\nu} = -\partial_i T^{i\nu}$ for $T^{0\nu}(t+\Delta t)$
- From $T^{0\nu}$, reconstruct ε and u^{μ} at $t + \Delta t$ and $P = P(\varepsilon)$.
- Reconstruct

$$T^{i\nu}(t+\Delta t)=\varepsilon u^i u^\nu+(g^{i\nu}+u^i u^\nu)P$$

Viscous MUSIC

- Right now shear viscosity only.
- Viscosity effect implemented following H. Song's thesis (0908.3656)

$$\Delta^{\mulpha}\Delta^{
ueta} D\pi_{lphaeta} = -rac{1}{ au_\pi}\left(\pi^{\mu
u} - 2\eta
abla^{\langle\mu}\,u^{\mu
angle} + rac{4}{3} au_\pi\pi^{\mu
u}(\partial_lpha u^lpha)
ight)$$

which comes from Baier, Romatschke, Son, Starinets, Stephanov (0712.2451) by setting other transport coefficients to zero.

Transverality is preserved by the evolution.

Physics from Hydro – What are we trying to learn?

- What is the nature of the initial condition?
- Do we reach local equilibrium in heavy ion collisions?
- How hot is it?
- How viscous is QGP?
- (Is there a phase transition? If so what kind?)

- Basic hydro observable: Single particle spectrum
- Cooper-Frye

$$rac{dN_i}{dy\,d^2p_T}=g_i\int_{\Sigma}f(u^{\mu}p_{\mu})p^{\alpha}d\Sigma_{\alpha}$$

with

$$f(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{e^{(-u^{\mu}p_{\mu}-\mu_i)/T} \pm 1}$$

and the freeze-out surface Σ :

- Basic hydro observable: Single particle spectrum
- Cooper-Frye

$$rac{dN_i}{dy d^2 p_T} = g_i \int_{\Sigma} f(u^{\mu} p_{\mu}) p^{\alpha} d\Sigma_{\alpha}$$

with

$$f(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{e^{(-u^{\mu}p_{\mu}-\mu_i)/T} \pm 1}$$

and the freeze-out surface Σ :

- Basic hydro observable: Single particle spectrum
- Cooper-Frye

$$rac{dN_i}{dy \, d^2 p_T} = g_i \int_{\Sigma} f(u^{\mu} p_{\mu}) p^{\alpha} d\Sigma_{\alpha}$$

with

$$f(u^{\mu}p_{\mu}) = rac{1}{(2\pi)^3} rac{1}{e^{(-u^{\mu}p_{\mu}-\mu_i)/T} \pm 1}$$

and the freeze-out surface Σ :

Theory goal: Infer <u>experimental</u> u^{μ} , μ_i and T by theoretical calculation of single particle spectra

Note: For viscous hydro
$$\delta f = f_0(1 \pm f_0) p^{\alpha} p^{\beta} W_{\alpha\beta} \frac{1}{2(\varepsilon + P)T^2}$$

Information content of single particle spectra

$$\frac{dN_i}{dy d^2p_T} = \frac{dN_i}{2\pi p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_{i,n}(p_T, y) \cos(n\phi)\right)$$

- "Flow": $v_{i,n}(p_T)$
- Came from

$$\varepsilon(\mathbf{x}_T, \eta) = \varepsilon(r_T, \eta) \left(1 + \sum_{n=1}^{\infty} 2\epsilon_n(r_T, \eta) \cos(n\phi)\right)$$

- *Pressure* converts it into $v_{i,n}(p_T)$
- History matters

Elliptic Flow

Spatial anisotropy

Pressure does the conversion

Momentum anisotropy

Triangular Flow

Triangular Flow

 $cos(3\phi)$ component only

Why both?

- Elliptic flow: Sensitive to the overall almond shape
- Triangular flow: Less so. More local in the sense that average initial condition gives zero v₃.
- Triangular flow: Expect more sensitivity to η/s . Two possible reasons:
 - Viscosity smears out lumps.
 - Viscosity reduces differential flow Triangle is "rounder" than ellipse
- Goal: Get dN/p_TdpTdy , v_1 , v_2 , v_3 and v_4 right at the same time to constrain η/s better.

Lumpy MUSIC

Initial condition is lumpy (Glauber with gaussian energy profile):

Ideal hydro

E-by-E

Ideal vs. Viscous

Get particle spectra right

 Hadron spectrum using EoS-Q (Azhydro) and EoS-L (Huovinen Petreczky)

Ideal. p_T spectrum for hadrons.

Ideal. $dN/d\eta$ for hadrons

Get particle spectra right

Pion spectrum using EoS-Q and EoS-L

Ideal.
Pion spectrum: Centrality
dependence

 p_T spectrum comparison

Get particle spectra right

Pion spectrum using EoS-Q and EoS-L

Ideal.
Pion spectrum: Centrality
dependence

Ideal. Average p_T

Flow in Ideal MUSIC (average initial condition)

Elliptic flow

Elliptic flow of hadrons

Elliptic flow: Mass dependence

Flow in Ideal MUSIC (average initial condition)

Elliptic flow

Elliptic flow: Centrality dependence

Elliptic flow: Rapidity dependence

Flow in Ideal MUSIC (average initial condition)

V₄

 v_4 : p_T dependence

 v_4 : Sensitivity to the grid orientation unless the grid is super-fine

Viscous Lumpy MUSIC

• v_2 and v_3 p_T dependence (Resonances up to ϕ)

Viscous Lumpy MUSIC

Resonances up to ϕ

Confronting new data

Phenix (arXiv:1105.3928)

*v*₃: Our *Predictions* (Green Triangles)

Confronting new data

Our *predictions* vs ALICE data (arXiv:1105.3865)

MUSIC Summary

Got here!

MUSIC Summary

- 3+1D Ideal Hydro Good to have several implementations
- 3+1D Viscous Lumpy Hydro First!
- v₃ is non-zero because initial conditions are lumpy.
- Sophisticated Hyper-surface finding algorithm for freeze-out
- Spectra and v_n Under control. Compares well with both RHIC and LHC data.
- A step towards a comprehensive simulation model of Heavy Ion Collisions

Jets propagating inside QGP

$$\begin{aligned} \frac{d\sigma_{AB}}{dt} &= \int_{\text{geometry}} \int_{abcd} \\ &\times f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ &\times \frac{d\sigma_{ab \to cd}}{dt} \\ &\times \mathcal{P}(x_c \to x_c' | T, u^{\mu}) \\ &\times D(z_c', Q) \end{aligned}$$

This is what we need.

$$\int_{\text{geom}} \mathcal{P}(\mathbf{x}_{\mathcal{C}} \to \mathbf{x}_{\mathcal{C}}' | \mathbf{T}, \mathbf{u}^{\mu}) D(\mathbf{z}_{\mathcal{C}}', \mathbf{Q}):$$
 Medium modified frag. function

 $\mathcal{P}(x_c \to x_c' | T, u^\mu)$: Evolution within Hydro background

MARTINI

- Modular Algorithm for Relativisitic Treatment of heavy IoN Interaction
- Propagates PYTHIA jets in MUSIC background
- Uses leading order thermal QCD collision & radiation rates
- Full jet reconstruction with FASTJET

Young, Schenke, Jeon, Gale, arXiv:1103.5769 ATLAS, PRL 105 (2010) 252303

∢□▶ ∢□▶ ∢ ≣ ▶ ∢ ≣ ▶ ♥ ♀ (