Measuring the Properties of the QGP

Conditions

- μ
- T_i
- CNM effects
- Initial State

Properties

- Screening length
- η/s
- $\mathrm{d}E/\mathrm{d}x$

Stefan Bathe for PHENIX, QM2011
What I will show you today

- v_2 of thermal direct photons
 - Constrains T_i and τ_0
- CNM effects in $d+Au$
 - Density dependence of shadowing from J/ψ
 - Reconstructed jets
 - Low-x suppression from forward di-hadron correlations
- v_3
 - Disentangle initial state from η/s
 - Implications for 2-particle correlations
- E loss
 - Path-length dependence
- Results from energy scan
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- T_i
- CNM effects
- Initial State

Properties

- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

 Conditions Properties

- $\mu \sim 0$
- T_i
- CNM effects
- Initial State
- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Direct Photon Excess in Au+Au

\[\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \]

NLO Vogelsang

\[p+p \]

PRL 104, 132301 (2010)

Stefan Bathe for PHENIX, QM2011
Direct Photon Excess in Au+Au

- Direct photon excess above $p+p$ spectrum
- Exponential (consistent with thermal)
- Inverse slope = 220 ± 20 MeV
- T_i from hydro
 - 300 . . . 600 MeV
 - Depending on thermalization time

$\sqrt{s_{NN}} = 200$ GeV

$p+p$

PRL 104, 132301 (2010)

Stefan Bathe for PHENIX, QM2011
Critical d+Au Check

New:
- no exponential excess in d+Au

Poster: Y. Yamaguchi

Stefan Bathe for PHENIX, QM2011
Direct photon v_2 further constrains T_i

Expected v_2:
- Prompt photons: 0 (time zero)
- Thermal photons
 - Early (flow not built up)
 - Late (like hadrons)

Diagram:
- Thermal photons
 - Au+Au at 200 AGeV
 - $b = 6$ fm

Reference:
- Chatterjee, Srivastava
- PRC79, 021901 (2009)

Stefan Bathe for PHENIX, QM2011
Direct Photon v_2

Statistical subtraction

inclusive photon v_2
- decay photon v_2
= direct photon v_2

$$v_2^{\text{dir.}} = \frac{R_\gamma v_2^{\text{inc.}} - v_2^{BG}}{R_\gamma - 1}$$
Direct Photon ν_2

- π^0 ν_2 similar to inclusive photon ν_2
- Two possibilities
 - A: there are no direct photons
 - B: direct photon ν_2 similar to inclusive photon ν_2
- Key: precise measurement of direct photon excess

Stefan Bathe for PHENIX, QM2011
Direct Photon v_2

- Direct photon v_2 large ($\sim 15\%$) at $p_T = 2.5$ GeV
- $v_2 \to 0$ where prompt photons dominate
Theory Comparison: Direct Photon v_2

- Models under-predict direct photon v_2
- Measurement further constrains T_i and τ_i
- Challenge to theorists

Theory calculation:
Holopainen, Räsänen, Eskola
arXiv:1104.5371v1

Plenary: S. Esumi (flow), Tue
Parallel: E. Kistenev (direct photons) Thu

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \approx 0$
- $T_i = 300-600$ MeV
- CNM effects
- Initial State

Properties

- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300\text{-}600 \text{ MeV}$
- CNM effects
- Initial State

Properties

- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Cold Nuclear Matter Effects

- Important for interpretation of HI data
 - Measure Cold Nuclear Matter (CNM) effects in d+Au collisions
- RHIC versatile
 - Can collide any nuclear species on any other

Stefan Bathe for PHENIX, QM2011
J/ψ in d+Au: Shadowing non-linear

- EPS09 shadowing with linear dependence on nuclear thickness matches for central collisions
- Overpredicts suppression for peripheral collisions
- R_{CP} shows this clearly
- Thickness (impact parameter) dependence of shadowing is non-linear!

Theory calculations:
- Eskola, Paukkunen, Salgado, JHEP04, 065
- Vogt, PRC71, 054902
- Kharzeev, Tuchin, NPA770, 40
- Kharzeev, Tuchin, NPA735, 248

Stefan Bathe for PHENIX, QM2011
Reconstructed Jets in $d+Au$
Reconstructed Jets in $d+Au$

PHENIX Preliminary

$d+Au$, $\sqrt{s_{NN}} = 200$ GeV

Jet R_{cp} in central $d+Au$ modified
- caution: this is not R_{dA}!
- consistent with $\pi^0 \ R_{cp}$
- anti-shadowing?

Parallel: N. Grau (gamma-hadron, jets) Tue
Poster: D. Perepelitsa (jets in dAu)
Forward di-hadron correlations

\[\sqrt{s_{NN}} = 200 \text{ GeV}, \text{d}+\text{Au}, \text{p}+\text{p} \rightarrow \text{Cluster} + \pi^0; \quad 3.0 < \eta_{\text{clus}}, \eta_{\pi^0} < 3.8 \]

Pocket formula:

\[x_{Au}^{\text{frag}} = \frac{<p_{T1}> e^{-\eta_1} + <p_{T2}> e^{-\eta_2}}{\sqrt{S}} \]

\[J_{dA} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{\sigma_{dA}^{\text{pair}}}{\sigma_{pp}^{\text{pair}}} / \frac{\sigma_{dA}}{\sigma_{pp}} \]

Stefan Bathe for PHENIX, QM2011

Color Glass Condensate?

new forward EM calorimeter

|\eta| = 3.0-3.8
Initial state low-x gluon suppression

\[\sqrt{s} = 200 \text{ GeV} \, p+p, \, d+Au \rightarrow h + \pi^0 + X \]

Di-hadron suppression factor

\(J_{dA} \)

\(10^{-1} \)

\(1 \)

smaller \(x \)

Forward-Forward

Mid-Forward

peripheral

Stefan Bathe for PHENIX, QM2011
Initial state low-x gluon suppression

\[\sqrt{s} = 200 \text{ GeV } p+p, d+Au \rightarrow h + \pi^0 + X \]

Di-hadron suppression factor

- Forward-Forward
- Mid-Forward

Peripheral

Central smaller \(x \)

\(J_{dA} \)

Parallel: M. Chiu (small \(x \) dAu correl) Thu
Poster: Z. Citron (small \(x \) dAu correlations)

Di-hadrons suppressed at low \(x \)

Important for interpretation of HI results

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300-600$ MeV
- CNM effects
 - non-linear shadowing
 - low-x suppression
 - anti-shadowing?

Properties

- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300-600$ MeV
- CNM effects: non-linear shadowing, low-x suppression, anti-shadowing?
- Initial State

Properties

- Screening length
- η/s
- dE/dx

Stefan Bathe for PHENIX, QM2011
Initial State determines flow strength

Glauber

CGC

Radial gluon distribution

2-D density profile

Initial state determines v_2 strength (largest uncertainty)

Disentangle initial conditions from flow strength

Stefan Bathe for PHENIX, QM2011
v_3 has fluctuations origin

weak centrality dependence of $v_3 \Rightarrow$ fluctuations origin

Stefan Bathe for PHENIX, QM2011
v_3 disentangles initial state and η/s

V_2 described by Glauber and CGC

Theory calculation: Alver et al. PRC82,034913

PHENIX
Glauber
KLN

PHENIX
arXiv:1105.3928

$1.75 < p_T < 2.0 \text{ GeV/c}$

arXiv:1105.3928v1

N_{part}

0 50 100 150 200 250 300 350

0 0.05 0.1 0.15 0.2 0.25

Glauber

- Glauber initial state
- $\eta/s = 1/4\pi$

KLN

- CGC initial state
- $\eta/s = 2/4\pi$

Stefan Bathe for PHENIX, QM2011

Two models
v_3 disentangles initial state and η/s

v_2 described by Glauber and CGC

Theory calculation: Alver et al. PRC82,034913

v_3 described only by Glauber

Theory calculation: Alver et al. PRC82,034913

Two models

- **Glauber**
 - Glauber initial state
 - $\eta/s = 1/4\pi$

- **MC-KLN**
 - CGC initial state
 - $\eta/s = 2/4\pi$

Stefan Bathe for PHENIX, QM2011
v_3 disentangles initial state and η/s

v_2 described by Glauber and CGC

Theory calculation: Alver et al. PRC82,034913

v_3 described only by Glauber

Theory calculation: Alver et al. PRC82,034913

Stefan Bathe for PHENIX, QM2011

Two models

- **Glauber**
 - Glauber initial state
 - $\eta/s = 1/4\pi$

- **MC-KLN**
 - CGC initial state
 - $\eta/s = 2/4\pi$

Plenary: S. Esumi, Tue
Parallel: R. Lacey (v3, jet shape) Mon
v_3 explains double-hump

- v_2 correction only
- double-hump

Stefan Bathe for PHENIX, QM2011
v_3 explains double-hump

- v_2 correction only
 - double-hump

- v_2, v_3, v_4 correction
 - double-hump disappeared
 - Peak still broadened

Plenary: S. Esumi, Tue
Parallel: R. Lacey (v3, jet shape) Mon

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300-600$ MeV
- CNM effects
 - non-linear shadowing
 - low-x suppression
 - anti-shadowing?
- Initial State \rightarrow Glauber

Properties

- Screening length
- $\eta/s \rightarrow 1/4\pi$
- dE/dx

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300-600$ MeV
- CNM effects: non-linear shadowing, low-x suppression, anti-shadowing?
- Initial State: Glauber

Properties

- Screening length
- $\eta/s \rightarrow 1/4\pi$
- dE/dx

Stefan Bathe for PHENIX, QM2011
Path-length dependence of E loss

Theory calculations:
Wicks et al., NPA784, 426
Marquet, Renk, PLB685, 270
Drees, Feng, Jia, PRC71, 034909
Jia, Wei, arXiv:1005.0645

R_{AA} explained by both models
Path-length dependence of E loss

\(\nu_2 \) not explained by pQCD (even with fluctuations & saturation)

Theory calculations:
Wicks et al., NPA784, 426
Marquet, Renk, PLB685, 270
Drees, Feng, Jia, PRC71, 034909
Jia, Wei, arXiv:1005.0645

\(R_{AA} \) explained by both models
Path-length dependence of E loss

v_2 not explained by pQCD (even with fluctuations & saturation)

v_2 explained by cubic path length dependence (like AdS/CFT)

Theory calculations:
Wicks et al., NPA784, 426
Marquet, Renk, PLB685, 270
Drees, Feng, Jia, PRC71, 034909
Jia, Wei, arXiv:1005.0645

R_{AA} explained by both models
Path-length dependence of E loss

\(\nu_2 \) not explained by pQCD (even with fluctuations & saturation)

\(\nu_2 \) explained by cubic path length dependence (like AdS/CFT)

\(\nu_2 \) data favors \(\frac{dE}{dx} \sim l^3 \) (like AdS/CFT)

\(R_{AA} \) explained by both models

Theory calculations:
Wicks et al., NPA784, 426
Marquet, Renk, PLB685, 270
Drees, Feng, Jia, PRC71, 034909
Jia, Wei, arXiv:1005.0645

Plenary: M. Purschke (R_AA) Wen
Parallel: N. Grau (gamma-hadron, jets) Tue
Parallel: D. Sharma (light vector mesons) Mon
Poster: M. Tannenbaum (E loss RHIC vs. LHC)
\(\gamma-h: \) fragmentation function in Au+Au

\[
\xi = - \ln \left(\frac{p_T^h}{p_T^\gamma} \right)
\]

\(p+p \) consistent with \(e^++e^- \)

Au+Au consistent with E loss model

Tasso: Braunschweig et al., Z. Phys. 320 C47, 187
MLA: Borghini, Wiedemann, hep-ph/0506218

Parallel: N. Grau (gamma-hadron, jets) Tue
Poster: M. Tannenbaum (E loss RHIC vs. LHC)
Measuring the Properties of the QGP

Conditions

- $\mu \sim 0$
- $T_i = 300$-600 MeV
- CNM effects
 - non-linear shadowing
 - low-x suppression
 - anti-shadowing?
- Initial State
 - Glauber

Properties

- Screening length
 - $\eta/s \to 1/4\pi$
- $dE/dx \to l^3$

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

\(\mu \approx 0 \)

\(T_i = 300-600 \text{ MeV} \)

CNM effects
non-linear shadowing
low-x suppression
anti-shadowing?

Initial State
? \rightarrow \text{Glauber}

Properties

Screening length
\(\frac{\eta}{s} \rightarrow \frac{1}{4\pi} \)

\(\frac{dE}{dx} \rightarrow l^3 \)
v_2, v_3, v_4 independence of $\sqrt{s_{NN}}$ (for 39, 62, 200 GeV)

Just like at 200 GeV, disentangle initial state and η/s

Stefan Bathe for PHENIX, QM2011
v_2 saturation with $\sqrt{s_{NN}}$

$\rho_T = 1.7$ GeV

$\rho_T = 0.7$ GeV

Plenary: S. Esumi, Tue
Parallel: R. Lacey (v3, jet shape) Mon
Parallel: X. Gong (energy scan: bulk) Fri
Poster: S. Mizuno (PID v3)

Bathe for PHENIX, QM2011
\(s_{NN} \) dependence of energy loss

- \(R_{AA} \) suppressed also at 39 GeV
- \(R_{AA} \) at 62 GeV approaches 200 GeV level at high \(p_T \)

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

\(\mu \sim 0 \)

\(T_i = 300-600 \text{ MeV} \)

CNM effects

non-linear shadowing

low-x suppression

anti-shadowing?

Initial State

\(\rightarrow \text{Glauber} \)

Properties

Screening length

\(\eta/s \rightarrow 1/4\pi \)

d\(E/dx \rightarrow l^3 \)

Stefan Bathe for PHENIX, QM2011
Near-Term Future: Silicon Vertex Detector

Status
- VTX successfully commissioned in 2011 $p+p$ run
- VTX taking data in Au+Au now!

Physics
- R_{AA} of c, b separately
- v_2 of c, b separately
- Jet tomography ($\text{di-hadron}, \gamma-h, c-h, c-\bar{c}$)

Data: $p+p@500$ GeV, 2011

Stefan Bathe for PHENIX, QM2011
Near-Term Future: Silicon Vertex Detector

Status

- VTX successfully commissioned in 2011 $p+p$ run
- VTX taking data in Au+Au now!

Data: Au+Au@200 GeV, 2011

Physics

- R_{AA} of c, b separately
- v_2 of c, b separately
- Jet tomography (di-hadron, $\gamma-h$, $c-h$, $c-\bar{c}$)

Stefan Bathe for PHENIX, QM2011
What I could not cover in this talk

- T_i
 - **Plenary**: S. Esumi, Tue
 - **Parallel**: E. Kistenev (direct photons) Thu
 - **Poster**: Y. Yamaguchi (direct photons dAu)

- v_3, jet shape, η/s
 - **Plenary**: S. Esumi, Tue
 - **Parallel**: R. Lacey (v3, jet shape) Mon
 - **Parallel**: X. Gong (energy scan: bulk) Fri
 - **Poster**: S. Mizuno (PID v3)

- Chiral Symmetry
 - **Parallel**: M. Makek (Results from HBD) Thu

- Heavy Flavor
 - **Plenary**: C. Luiz da Silva, Fri
 - **Parallel**: A. Sen (quarkonia) Tue
 - **Parallel**: M. Durham (open heavy flavor) Fri
 - **Poster**: S. Whitaker (Upsilon RAA)
 - **Poster**: A. Takahara (J/psi photoproduction)
 - **Poster**: H. Thewman (high p_T single e in $p+p$)

- Energy Loss
 - **Plenary**: M. Purschke (R_AA) Wen
 - **Parallel**: N. Grau (gamma-hadron, jets) Tue
 - **Parallel**: N. Novitsky (energy scan) Fri
 - **Parallel**: D. Sharma (light vector mesons) Mon
 - **Poster**: M. Tannenbaum (E loss RHIC vs. LHC)
 - **Poster**: O. Chvala (RAA in 39 and 62 GeV)
 - **Parallel**: D. Sharma (light vector mesons) Mon

- Cold nuclear matter
 - **Parallel**: M. Chiu (small x dAu correl) Thu
 - **Parallel**: J. Kamin (dAu dileptons) Fri
 - **Poster**: Z. Citron (small x dAu correlations)
 - **Poster**: D. Perepelitsa (jets in dAu)

- Future
 - **Parallel**: A. Sickles (Decadal Plan) Thu
 - **Poster**: M. Chiu (Fast TOF, 10 ps)
 - **Poster**: M. Kurosawa (VTX (pixel))
 - **Poster**: T. Hachiya (VTX (pixel))
 - **Poster**: R. Akimoto (VTX (pixel))
Conclusions

- v_2 of thermal direct photons **large**
 - Further constrains T_i and τ_0
- CNM effects in $d+$Au
 - **Non-linear** density dependence of shadowing from J/ψ
 - **Reconstructed jet** R_{cp} modified
 - **Low-x suppression** from forward di-hadron correlations
- v_3
 - **Disentangle initial state from η/s**
 - **Double-hump disappears** in 2-particle correlations
- **Energy loss**
 - **Cubic** path-length dependence
- **Energy Scan**
 - v_2 **saturation** 39 GeV
 - R_{AA} **suppressed** also at 39 GeV

Thank you!

Stefan Bathe for PHENIX, QM2011
Backup
Jet-π^0 comparison $d+Au$

- $\pi^0 R_{cp}$ calculated from published R_{dA}
- Consistent in overlapping p_T range

Stefan Bathe for PHENIX, QM2011
Confirmation from $d+Au$ and $Cu+Cu$

- Fraction of direct photons compared to pQCD

No excess in $d+Au$ (no medium)

Excess also in $Cu+Cu$

Stefan Bathe for PHENIX, QM2011
Inclusive Photon v_2

- Measured with EMCal

Issue:
- Hadronic contamination at low p_T
 - Hadrons deposit only fraction of energy
 - depends on hadron species
 - Difficult to estimate

- Confirmed with external conversion
 - No hadronic contamination

Stefan Bathe for PHENIX, QM2011
Direct photon excess R_γ

- Key to this analysis
 - Precise measurement of R_γ through internal conversion
 - 20% direct photon fraction
 - \Rightarrow direct photon similar to inclusive photon v_2 (or $\pi^0 v_2$)

Stefan Bathe for PHENIX, QM2011
Correlations at Forward Rapidity

- J_{dA} suppressed in central d+Au

Caveat:
- Double parton interactions (DPI) enhanced in d+Au
 - may be dominant process for large forward rapidity (rather than 2->2 process)
- Then xfrag not sensitive to rapidity

Pocket formula:

$$x_{Au}^{\text{frag}} = \frac{<p_{T1}> e^{-\eta_1} + <p_{T2}> e^{-\eta_2}}{\sqrt{s}}$$
Direct photon flow calculation

30-35 % most central Au+Au@200 GeV
upper curve: \(m_q = 0.1 \) GeV
lower curve: \(m_q = 0.3 \) GeV

thermal only

Hadrons
PHENIX
PRL98, 162301

thermal + prompt

V. Pantuev, arXiv:1105.NNNN
-expanding fireball in longitudinal and radial direction
- photons are produced from matter which flows
- Doppler

Stefan Bathe for PHENIX, QM2011
\(T_i \) from hydro

- 300 \ldots 600 MeV
- Depends on thermalization time, \(\tau_0 \)
- anti-correlation: \(T_i \leftrightarrow \tau_0 \)

Theory calculations:
- d’Enterria, Peressounko, EPJ46, 451
- Huovinen, Ruuskanen, Rasanen, PLB535, 109
- Srivastava, Sinha, PRC 64, 034902
- Turbide, Rapp, Gale, PRC69, 014903
- Liu et al., PRC79, 014905
- Alam et al., PRC63, 021901(R)

Stefan Bathe for PHENIX, QM2011
What is the initial Temperature, T_i?

- Integrate over space-time evolution
- Early photons
 - Large temperature
 - Large inverse slope
- Late photons
 - Low temperature, but large velocity boost
 - Also large inverse slope
- \(\Rightarrow \) Need model for quantitative answer

Figures: K. Mendoza, U. Colorado

Stefan Bathe for PHENIX, QM2011
Measuring the Properties of the QGP

Conditions

\[\mu \approx 0 \]

\[T_i = 300-600 \text{ MeV} \]

CNM effects

Initial State

Properties

Screening length

\(\eta/s \)

dE/dx

Stefan Bathe for PHENIX, QM2011
Factorizing initial state and viscosity

- v_2 described by both models
 - Glauber
 - Glauber initial state
 - $\eta/s = 1/4\pi$
 - KLN
 - CGS initial state
 - $\eta/s = 2/4\pi$
- v_3 described by only one model
 - Glauber
 - Glauber initial state
 - $\eta/s = 1/4\pi$

Data:
PHENIX, arXiv:
Models:
JG.-L. e. a. Ma (2010), 1011.5249.

Stefan Bathe for PHENIX, QM2011