

High-p_T suppression of Λ and K⁰_s in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with ALICE

Simone Schuchmann

Quark Matter 2011, Annecy

Outline

- Motivation
- Λ and K^0_{s} reconstruction
- Nuclear modification factors:

Comparison to RHIC results

Outline

- Motivation
- Λ and K^{0}_{s} reconstruction
- Nuclear modification factors:
 - R_{CP}
 R_{AA}
- Comparison to RHIC results

Sub-detectors of interest in this talk: ALICE TPC and ITS

Motivation

- Why looking at high pt?
 - Diagnostic potential to probe the created medium e.g the QGP via
 - the measurement of yields and particle ratios
 - comparison between AA and pp collisions
- \rightarrow Parton energy loss as probe of the medium
- Charged particle R_{AA}:
 - Strong suppression in Pb-Pb collisions
 compared to *pp* around 6-8 GeV/c in p_T
 - Rise towards high p_T
- Identified particles?
- Baryons vs mesons?

Motivation

• Baryon meson anomaly for strange particles (Talk by J. Belikov (ID497))

• What is the effect on R_{CP} and R_{AA}?

Motivation

- Measurement of identified particles at high p_τ
 - Λ and $K^0_{\ s}$
 - No requirement of dedicated PID detector
- Reconstruction via week decay products:

$$K^0_{s} \to \pi^+ \pi^- \qquad \Lambda \to \pi^- p$$

• Invariant mass analysis

Masses and width

Our "standard candles" for calibration of p_{τ} scale and p_{τ} resolution.

Masses and width

Fit of the background

Fit of the peak for mass and width extraction

Masses and width

Analysis

• Data sets:

Centrality bin	Number of events
0 - 5%	876,896
60 - 80%	3,478,958
рр	16,627,679

- Acceptance cuts:
 - mother rapidity < 0.75
 - daughters $|\eta| < 0.8$

Talk by A. Toia (ID 72)

Efficiency and systematics

- Most of the systematics cancel in spectra ratios
- Ratio of efficiency for 0-5% and 60-80% enters into the systematic errors of R_{CP} and R_{AA}
- Feed down correction is applied for Λ

 \rightarrow contribution to the systematic error at lower p_{T}

R_{CP}: K⁰_s (0-5%)/(60-80%)

$$R_{CP} = \frac{dN_{central}/dp_{T}}{dN_{periph}/dp_{T}} \cdot \frac{\langle N_{coll} \rangle_{periph}}{\langle N_{coll} \rangle_{central}}$$

R_{CP} : K_{s}^{0} (0-5%)/(60-80%)

$$R_{CP} = \frac{dN_{central}/dp_T}{dN_{periph}/dp_T} \cdot \frac{\langle N_{coll} \rangle_{periph}}{\langle N_{coll} \rangle_{central}}$$

23.05.2011

R_{CP} : comparison $K_{s}^{0} - K^{+-}$

 Charged Kaons match the K⁰_s at low p_T

R_{CP} : comparison K_{s}^{0} – charged

- Charged Kaons match the K⁰_s at low p_T
- R_{CP} similar for charged particles and K⁰_s
- Strong suppression of K⁰_s at high p_T

R_{CP} : K_{s}^{0} and Λ

• Low p_T : Λ enhanced over K_s^0 (baryon to meson anomaly) up to $p_T = 8 \text{ GeV/c}$

• High
$$p_{T}$$
:

- R_{CP} for A and K⁰_s
 compatible
- Similar to R_{CP} of charged particles

R_{CP} : comparison to STAR (Λ + Λ)

 R_{CP} slightly higher than STAR measurement

 A enhancement extended to higher p_T

R_{AA} : peripheral Λ and K_{s}^{0}

$$R_{AA} = \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T} \cdot \frac{1}{\langle N_{coll} \rangle_{AA}}$$

R_{AA} : peripheral Λ and K_{s}^{0}

$$R_{AA} = \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T} \cdot \frac{1}{\langle N_{coll} \rangle_{AA}}$$

• Low p_T :

A consistent with unity

• High p_{T} :

 A and K⁰_s are suppressed similarly

R_{AA}: central vs peripheral

R_{AA}: comparison to charged

R_{AA} : comparison to STAR (Λ)

Summary

- Λ and K_{s}^{0} R_{CP}, R_{AA} measured in Pb-Pb and *pp* at $\sqrt{s_{NN}}$ = 2.76 TeV up to 16 GeV/c in p_T
- Strong suppression observed at high $p_T (p_T > 8 \text{ GeV/c})$
 - Λ and K_{s}^{0} compatible
 - Similar to charged particles
- At lower $p_T (p_T < 5 \text{ GeV/c}) \Lambda$ and K^0_s different in R_{CP} and R_{AA}
 - Baryon meson anomaly
 - ALICE R_{AA} at maximum much smaller than STAR measurements

R_{dAu} - **STAR results**

