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Motivation

• The system created in a heavy-ion collision is finite, very dynamic and inhomogeneous.
• Nonequilibrium effects play an important role at the phase transition in heavy-ion collisions.
• We propagate the order parameter of chiral symmetry explicitly. It is coupled to a realistic fluid dynamical
description of the expansion of the fireball. These models are called chiral fluid dynamics [1,2].

• We extend chiral fluid dynamics by consistently including dissipation and noise and existing Langevin studies of
chiral symmetry [3,4,5] by consistently taking the back reaction of the fields on the finite and dynamic heat bath
into account.
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The quark-meson model
The starting point for the coupled system is the quark-meson model

L = q
[

iγµ∂µ − g (σ + iγ5τ~π)
]

q +
1
2
(∂µσ∂µσ) +

1
2
(∂µ~π∂µ~π)− U(σ, ~π) .

In the mean-field approximation the thermodynamic potential to one-loop level at
µ = 0 is given by

Ω(σ, ~π,T ) = U (σ, ~π)− 2dqT
∫

d3p
(2π)3 ln

(

1 + exp
(

−
E
T

))

,

For a small coupling the transition is a
crossover, for g = 3.63 the potential becomes
flat at Tc = 139.88 MeV (critical point). For
g = 5.5 one finds two degenerate minima at
Tc = 123.27 MeV (first order phase transi-
tion). -1.5
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Coupled dynamics
Within the formalism of the 2PI effective action one can selfconsistently [6,7] derive
the dynamics of the σ mean field and the quark fluid [8]. The σ field is propagated
according to a Langevin equation

∂µ∂µσ +
δU
δσ

+ gρs + η∂tσ = ξ

with a damping term η and the noise field ξ.
For k = 0

η = g2dq

π

(

1 − 2nF(
mσ

2
)
) (m2

σ
4 − m2

q)
3
2

m2
σ

〈ξ(t)ξ(t ′)〉 =
1
V

δ(t − t ′)mση coth
(mσ

2T

)

.
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Below Tc: damping by the interaction with the hard pions η = 2.2/fm [4]. The
quark fluid evolves according to energy-momentum conservation. Here,
approximation of an ideal fluid:

∂µT µν
q = Sν

The source term describes the energy dissipation from the field to the fluid

∂µT µν
σ = −(gρs + η∂tσ)∂

νσ

and the energy flow from the fluid to the field provided by the noise field ξ. It is
obtained from the total energy of the field [9]

Eσ = 1/2∂tσ
2 + 1/2~∇σ2 + U(σ)

Time evolution of the coupled system
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Figure: The relaxation of the σ field and its fluctuations averaged over an
inner sphere. In a scenario with a first order phase transition the σ field
relaxes more slowly than for a scenario with a critical point, where we see
oscillations due to the vanishing damping at the phase transition [10].
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Figure: The time evolution of the temperature of the quark fluid and its
fluctuations averaged over an inner sphere. During the relaxational
process of the σ field one observes the reheating effect in a scenario with a
first order phase transition [10].

Intensity of σ fluctuations dNσ

d3k
=

(ω2
k |σk |

2+|∂tσk |
2)

(2π)32ωk
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Figure: Deviation of the σ field from equilibrium for
a scenario with a critical point and a first order
phase transition [10].
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Figure: The intensity of σ fluctuations in a critical point
scenario [10].
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Figure: The intensity of σ fluctuations in a scenario
with a first order phase transition [10].
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Summary
• We presented a model of chiral fluid dynamics which consistently includes damping and noise.
• Energy-momentum conservation is obtained by taking the back reaction on the heat bath into account.
• We observed the nonequilibrium effects of supercooling and reheating.
• Enhanced σ fluctuations at the first order phase transition were found.
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