

Ulla Tihinen

Measurement of charged particle pseudorapidity density in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector

<u>Yujiao Chen</u>, for the ATLAS Collaboration Physics department, Columbia university

Introduction

- Connection with energy/entropy production in early stages of heavy ion collisions.
- Past measurements exhibit interesting geometrical scaling properties.
 - Multiplicity at mid-rapidity scales faster than <N_{part}>, but in a way that is energy independent.
 - ➡ Total multiplicity scales with <N_{part}>.
- ✦ Hard to predict:
 - ► Low momentum regime
 - ➡ Non-perturbative QCD
 - ➡ Multiple body interactions
 - → Different approaches: CGC, empirical scaling rules, Landau hydrodynamics etc

ATLAS pixel detector

- High precision tracking device, very close to beam pipe.
- Three barrel layers (50.5, 88.5, 122.5 mm in radius), six disk layers, three on each side.
- Active area $\approx 1.8 \text{ m}^2$ with $\approx 80 \times 10^6$ pixels arranged into 1744 modules.
- Placed in a 2 T solenoid field when turned on. B-field was off for this analysis.
- Pixel barrel used in this analysis, $|\eta| < 2.0$

Methods description

- Pixel tracking: ATLAS standard tracking algorithm, pixel detector only
- Two-point tracklet method:
 - Select high quality clusters.
 - Select cluster pairs aligned with primary vertex:

$$\sqrt{\left(\frac{\Delta\eta}{\sigma_{\Delta\eta}}\right)^2 + \left(\frac{\Delta\phi}{\sigma_{\Delta\phi}}\right)^2} < 3 * \sqrt{2}$$

Two-point tracklet method

Two methods used to count tracklets.

Method 1: multiple associations to layer-0 treated as one tracklet.
Method 2: multiple associations to layer-0 treated as multiple tracklet candidates.

♦ Flipped event: $(z - Vz) \rightarrow -(z - Vz), Φ \rightarrow π - Φ$

Subtract combinatorics using flipped events

Centrality definition

- Use Forward calorimeter transverse energy
 3.2<|η|<4.9
 - Sampling fraction: $f = 100 \pm 2\%$

MC samples p_T re-weighting

HIJING pT spectrum differs
 significantly from data.
 HIJING spectrum much higher at low pT.

Re-weighting Procedure:

A re-weighting function is applied to HIJING sample to account for p_T difference between data and MC, used only for corrections, not for p_T measurement.

Re-weighting function is obtained from pixels tracks from B-on data.

The re-weighted HIJING spectrum agrees relatively well with data.

Correction procedure

Pixel tracking: Efficiency: \(\epsilon_{pt}(\epsilon) = \frac{N_{pr}^{match}(\epsilon)}{N_{pr}(\epsilon)}\), Background: \(b_{pt}(\epsilon) = \frac{N_{pt}^{backg}(\epsilon)}{N_{pt}(\epsilon)}\) Correction factor: $C_{pt}(\epsilon) = \frac{1 - b_{pt}^{backg}(\epsilon)}{\epsilon_{pt}(\epsilon)}$

Comparison of three methods

$dN_{ch}/d\eta$ distribution

Systematic uncertainties

Source	Uncertainty (0-10%)	(70-80%)
MC detector description	0.4%	0.4%
Extra material	2%	2%
$\Delta \mathcal{R}$ cut	1%	1%
$p_{\rm T}$ re-weighting	0.5%	0.5%
Hadron flavor composition	1%	1%
Enhanced K_s , Λ .	1%	1%
HYDJET	0.5-7.5% vs. η	0%
Analysis Method	3.5%	1%
Combined $(\eta = 0)$	4%	3%
Combined $(\eta = 2)$	8.5%	3%

5% increase of yield from η~0 to η~1 in peripheral events
(30-80% centrality class)

$dN_{ch}/d\eta$ distribution

Ratio of central to peripheral

Eugene Levin, Amir H. Rezaeian, arXiv:1102.2385 [hep-ph]

SNN dependence

N_{part} dependence

RHIC result scaled up by a factor of 2.15 to match central ATLAS result.

$dN_{ch}/d\eta/\langle N_{part}/2\rangle$ shape comparison

Extended measurement to high pseudorapidity region($|\eta| < 2.0$), but not yet able to address details of limiting fragmentation, which requires further forward region measurement.

Conclusions

- dN_{ch}/dη over |η|<2.0 measured in different centrality bins.
 - 5% increase from η~0 to η~1 in peripheral events (30-80% centrality class).
 - No significant shape change in different centrality class.
- Energy and N_{part} dependence of dN_{ch}/dη/
 <N_{part}/2> at mid-rapidity are compared with other experiments.
 - ➡ Confirms RHIC N_{part} dependence trend.
 - ➡ Result is consistent with other experiments.

dN_{ch}/dη shape also compared with PHOBOS results.

Data-MC comparison

N_{part} dependence

of 2.15 to match central ATLAS result.