Measurement of elliptic flow and higher-order flow harmonics from the event plane and two particle correlation methods in $\sqrt{s_{NN}}$ = 2.76 TeV Pb+Pb collisions with ATLAS detector at the LHC

Adam Trzupek for the ATLAS Collaboration Institute of Nuclear Physics PAN, Kraków, POLAND

Azimuthal Anisotropy of Produced Particles

Strongly interacting QGP

Pressure gradients lead to azimuthal anisotropy

$$dN/d(\phi - \Phi_{RP}) = N_0 (1 + 2v_1 \cos(\phi - \Phi_{RP}) + \frac{2v_2}{2} \cos(2(\phi - \Phi_{RP})) + \frac{2v_3}{2} \cos(3(\phi - \Phi_{RP})) ...)$$

$$v_2 - \text{elliptic flow}$$

$$v_n = <\cos(n(\phi - \Phi_{RP}))>$$

Event Selection and Centrality Determination

First heavy ion run at $\sqrt{S_{NN}} = 2.76 \text{TeV}$

- Nov 4th-Dec 6th, 2010
- ~40 M Pb+Pb events (~7 μ b⁻¹) enter flow analysis after Data Quality, trigger cuts

Pb+Pb events are divided into 10% centrality bins according to measured total transverse energy in forward calorimeter (FCal)

ATLAS Calorimeter System

Tracks from Inner Detector are used for v_n determination p_T = 0.5-20 GeV, $|\eta|$ <2.5, full azimuthal acceptance

For event plane determination forward calorimeter is used, $3.2 < |\eta| < 4.8$, full azimuthal acceptance

Azimuthal Anisotropy in Pb+Pb collisions

 Φ_{RP} is approximated by event plane obtained for each FCal sub-event

$$\Psi_{n}^{P/N} = \frac{1}{n} tan^{-1} \frac{\displaystyle \sum_{i(P/N)} E_{T,i}^{tower} w_{i} sin(n\varphi_{i})}{\displaystyle \sum_{i(P/N)} E_{T,i}^{tower} w_{i} cos(n\varphi_{i})}$$

E_Ttower - tower transverse energy of FCal1

v₂ (not corrected for EP resolution) is
 consistent with v₂ extracted from fits (shown in red) to the azimuthal distributions:

$$1 + \sum_{n=1}^{6} v_n \cos(n\phi)$$

ATLAS A. Trzupek

Resolution Correction in ATLAS

A.M. Poskanzer, S. A. Voloshin, Phys. Rev. C58, 1671 (1998)

Best resolution corrections for elliptic flow measurement are in semi-central Pb+Pb collisions (20-30%) and in full FCal η acceptance

$$v_n = < \cos(n(\phi - \Psi_n^{P/N})) > /R$$

Systematic Uncertainties

Systematic uncertainties were evaluated by varying different aspects of the analysis

- Reduced FCal η-acceptance for EP determination
- Residual deviations from zero of $\langle \sin(2(\phi-\psi_2)) \rangle$ term
- Tighter impact parameter tracking cuts (|d0|, $|z0 \sin\theta| < 0.5 mm$)
- Negative vs. positive tracks
- Asymmetry with respect to η-reflection
- Dependence on data collection time
- Monte Carlo reconstruction using the same analysis procedure
- Centrality determination cuts (overall scale)

Systematic and statistic uncertainties are combined in quadrature

Elliptic Flow in Wide p_T Range

• Charged particles, $p_T = 0.5-20$ GeV, midrapidity, $|\eta|<1$

- Rapid rise of $v_2(p_T)$ up to $p_T = 3$ GeV
- Decrease within 3-8 GeV
- Weak p_T dependence beyond 8-10 GeV

Strongest elliptic flow is in mid-central Pb+Pb collisions (30-40% and 40-50%)

p_T-dependence of Elliptic Flow at Large η

The same trends are also observed

at larger pseudorapidity:

• 1 <
$$|\eta|$$
 < 2

• 2 < $|\eta|$ < 2.5

Pseudorapidity Dependence of v₂

At RHIC , in PHOBOS v_2 decreases by ~30% within η range from 0 to 2.5 (p_T>0)

Comparison to Other Experiments

Similar dependence both at low and high p_T

Higher Order Flow Harmonics

Higher Fourier harmonics, up to v₆, are extracted via EP method

Full FCal event used for EP determination to improve resolution for higher harmonics measurement

- Significant positive $v_2 v_6$ are measured in broad range of p_7 , η and centrality
- p_T dependence for all measured amplitudes is similar
- Very week η dependence of all harmonics

Jiangyong Jia presentation, ATLAS-CONF-2011-074, http://cdsweb.cern.ch/record/1352458

$v_n^{1/n}/v_2^{1/2}$ vs p_T over Broad Centrality Range

Hydrodynamic approach suggests scaling of v_n, e.g. v₄~v₂²
PHENIX PRL 105, 062301 (2010).

Two-particle Correlation Method

The two-particle correlation function:

$$\mathbf{C}(\Delta \phi, \Delta \eta) = \frac{\mathbf{N}_{s}(\Delta \phi, \Delta \eta)}{\mathbf{N}_{m}(\Delta \phi, \Delta \eta)}$$

where N_s and N_m are number of same- and mixed event track pairs separated at $\Delta \phi$ and $\Delta \eta$.

1-D (η projected) correlation function:

$$\frac{dN}{d\Delta\varphi}\sim 1+2\sum_{n}v_{n,n}\cos(n\Delta\varphi)$$

It is expected that for flow modulations:

$$V_{n,n}(p_T^a,p_T^b) = V_n(p_T^a)V_n(p_T^b)$$

And for "fixed-p_T" correlations:

$$\mathbf{v}_{\mathsf{n}} = \sqrt{\mathbf{v}_{\mathsf{n},\mathsf{n}}}$$

Two Particle Correlation vs EP Results

The agreements are within 5% for v_2 , v_3 , v_4 over a broad centrality range v_5 and v_6 agree at 10% and 15% level respectively (agreement within the systematic errors for the both methods)

Summary

- v_2 was measured for the first time in wide p_T , η and centrality range at the LHC energy
 - In p_T , v_2 is rapidly rising up to ~3 GeV, then decreasing within 3-8 GeV, and at highest p_T (up to 20 GeV) weakly changes
 - $v_2(\eta)$ remains approximately constant for $|\eta| < 2.5$
- Elliptic flow and higher flow harmonics (up to v_6) were measured with the event plane and two particle correlation methods
 - Results of both methods agree at 5-15% level and are consistent (p_T=1-3 GeV)
 - Similar p_T and η dependence of all measured amplitudes is observed
 - Very week η dependence of all harmonics
- Many new flow results available to constrain models of the dynamical evolution of the medium created at the LHC.

Event Plane Method of v_n Measurement in ATLAS

A.M. Poskanzer, S. A. Voloshin, Phys. Rev. C58, 1671 (1998)

Φ_{RP} approximated with each (P/N) FCal1 sub-event:

$$\Psi_{n}^{P/N} = \frac{1}{n} tan^{-1} \frac{\displaystyle \sum_{i(P/N)} E_{T,i}^{tower} w_{i} sin(n\varphi_{i})}{\displaystyle \sum_{i(P/N)} E_{T,i}^{tower} w_{i} cos(n\varphi_{i})}$$

Flattening procedure applied (w_i)

Resolution correction:

$$R = \sqrt{\langle \cos(n(\Psi_n^P - \Psi_n^N) \rangle)}$$

Flow harmonics obtained with tracks:

$$v_n = <\cos(n(\phi - \Psi_n^{P/N})) > /R$$

When calculating v_n with tracks EP from the opposite hemisphere is used to maximize pseudorapidity gap and lower autocorrelations (jets)