PARTON-MEDIUM INTERACTION FROM RHIC TO LHC

— a systematic approach

Thorsten Renk

based on work in collaboration with Jussi Auvinen, Risto Paatelainen, Hannu Holopainen, Chun Shen, Kari Eskola and Ulrich Heinz

INTRODUCTION

PATHLENGTH DEPENDENCE

- what the data show about energy loss physics HYDRO INITIAL STATE FLUCTUATIONS

- how they affect parton-medium interaction

 \sqrt{s} and P_T dependence of R_{AA}

- probing into the energy loss probability distribution $\operatorname{CONCLUSIONS}$

Why are we looking at high P_T probes?

- What is the physics of parton-medium interaction, what are the medium dof?
 transport coefficients q̂, ê,...
- What can we deduce about the medium geometry?
 - initial profile, fluctuations, freeze-out conditions, scales . . .
- How does the medium react to a perturbation?
 - energy redistribution, shockwaves, speed of sound. . .

Why are these questions so difficult to answer?

 \rightarrow ambiguities between medium evolution and parton-medium interaction modelling

- ightarrow steeply falling spectra energy shift pprox absorption, details are lost
- \rightarrow tough theoretical problems involving multiple scales

 \Rightarrow need systematics in theory: different models

 \Rightarrow need systematics in experiment: P_T , \sqrt{s} , reaction plane, I_{AA} ,...

- Duke 3+1 d hydrodynamical model C. Nonaka and S. A. Bass, Phys. Rev. C 75 (2007) 014902
- Jyväskylä 2+1 d hydrodynamical model
- K. J. Eskola et al., Phys. Rev. C 72 (2005) 044904; H. Holopainen et al, Phys.Rev. C 83 (2011) 034901
- VISH2+1 2+1 d viscous hydrodynamical model

H. Song and U. W. Heinz, Phys.Lett. B 658 (2008) 279; Phys.Rev. C 77 (2008) 064901; Phys.Rev. C 78 (2008) 024902

energy loss from leading parton

- ASW radiative energy loss formulation C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68, (2003) 014008.
- parametric elastic energy loss modelling T. Renk, Phys. Rev. C 76 (2007) 064905.
- AdS/CFT pQCD hybrid model C. Marquet and T. Renk, Phys. Lett. B 685 (2010) 270.
- elastic MC (pQCD interactions) J. Auvinen, K. J. Eskola and T. Renk, Phys.Rev. C 82 (2010) 024906.

in-medium shower

- YaJEM, YaJEM-D (MC code for induced radiation and drag)
- T. Renk, Phys. Rev. C 78 (2008) 034908; Phys. Rev. C 79 (2009) 054906, Phys.Rev. C 83 (2011) 024908

MODELLING OUTLINE

- LO pQCD calculation + intrinsic k_T for primary parton spectrum \rightarrow vertices in transverse plane distributed according to binary collision density
- hydrodynamical background evolution, constrained by bulk physics
- \rightarrow no additional free parameters for evolution when computing high P_T physics
- \rightarrow one parameter K_{med} connecting thermodynamics (e.g. ϵ) hard physics (e.g. \hat{q})
- $\rightarrow K_{med}$ chosen for given hydro to fit R_{AA} in 200 AGeV central AuAu collisions
- average over all possible in-medium paths
- \rightarrow all azimuth, wrt. reaction plane, wrt. event plane, . . .

either:

- leading parton energy loss (ASW, AdS, elastic, elastic MC)
- \rightarrow shift in leading parton energy, followed by vacuum fragmentation

or:

- in-medium shower evolution (YaJEM, YaJEM-D)
- \rightarrow YaJEM parton shower, followed by Lund hadronization
- (• trigger conditions, binning, . . .)

What is the influence of the medium model?

Given hydrodynamical models constrained by multiplicity, P_T spectra and v_2 and the same model for parton-medium interaction:

- How different is K_{med} required to describe R_{AA} in central collisions?
- How different is the resulting \hat{q}_{max} ?
- How does $R_{AA}(\phi)$ differ for non-central collisions?
- What properties of the hydro medium do we probe?

MEDIUM-MODEL

T. R., H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910.

MEDIUM-MODEL

- factor 2 dependence of spread and quenching parameter on medium evolution model
- \bullet spread orders 3+1d hydro > 2+1d vCGC > 2+1d vGlb > 2+1d ideal
 - differences unrelated to 3+1d vs. 2+1d
 - rather: initialization time, EOS, T_F , viscosity, profile
- 3+1d ideal has much larger freeze-out hypersurface, late time effects
- between vCGC and 2+1 ideal:
 - 50% difference due to difference in initialization time
 - 35% difference due to viscosity
 - 15% difference due to profile
- generically, if energy loss happens later, spread is magnified
- \Rightarrow we have a systematic understanding what features of medium evolution we probe
- \Rightarrow for *given* parton-medium interaction model, we do tomography
- T. R., H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910.

INITIAL STATE FLUCTUATIONS

What is the influence of initial-state fluctuations?

- R_{AA} is a non-linear function of density \uparrow
- \bullet binary vertices correlated with hotspots \downarrow
- irregular early flow field \uparrow
- event plane \neq reaction plane
 - \Rightarrow no P_T dependence, study $R_{AA}(\phi)$

INITIAL STATE FLUCTUATIONS

• compute R_{AA} at fixed $P_T = 10$ GeV as a function of ϕ in ASW \rightarrow left: with(out) vertex correlation, right: with(out) flow correction

- intra-event and inter-event fluctuations are large and about same order of magnitude
- correlation of production vertex with hotspot decreases R_{AA} by ~ 20 %
- irregular flow field is not an issue
- qualitatively similar results for elastic MC model (see talk by J. Auvinen)
- T. Renk, H. Holopainen, J. Auvinen, K. J. Eskola,1105.2647 [hep-ph]

INITIAL STATE FLUCTUATIONS

AuAu, 200 AGeV, 30-40% centrality

• 20 event average agrees with smooth result for $\sim 20\%$ different \hat{q}

- \bullet extrapolation to non-central collisions depends on fluctuation size scale \to this observable favours large scale $s\sim0.8~{\rm fm}$
- compared with other uncertainties, fluctuations are not a big issue

 \Rightarrow not unexpected, as small-sized fluctuations equilibrate rapidly, but successful models require late onset of energy loss

PATHLENGTH DEPENDENCE OF ENERGY LOSS

What is the pathlength dependence of eloss?

- linear for incoherent processes (elastic)
- quadratic for coherent radiation (ASW)
- \rightarrow reverting to \sim linear with finite energy corrections (YaJEM)
- cubic for AdS/QCD (AdS)
- in-medium shower: virtuality evolution from Q_i down to Q_0
- \rightarrow medium can only affect parton above $Q_{med} = \sqrt{E/L}$ (YaJEM-D)

PATHLENGTH DEPENDENCE OF ENERGY LOSS

AuAu 200 AGeV 20-40% centrality

PATHLENGTH DEPENDENCE OF ENERGY LOSS

model	elastic L	radiative L^2	AdS L^3	rad. finite E	min. Q_0
3+1d ideal	fails	works	fails	fails	works
2+1d ideal	fails	fails	marginal	fails	not tested
2+1d vCGC	fails	marginal	works	fails	not tested
2+1d vGlb	fails	marginal	works	fails	not tested

- quantum coherence is an important part of the answer
- finite energy corrections need to be taken seriously!
- \rightarrow quite possibly they destroy the success of L^2 and maybe also L^3
- \rightarrow quite possibly other existing shower codes do not reproduce pathlength dependence
- strong constraints on **combinations** of hydro + parton-medium interaction model
- I_{AA} provides additional constraints for shower evolution
- T. R., Phys. Rev. C83 (2011) 024908; J. Auvinen, K. J. Eskola, H. Holopainen, T. R., Phys. Rev. C82 (2010) 051901; T. R., H. Holopainen,
 U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910.

What happens at LHC kinematics?

- for flatter spectrum, shift \neq absorption
- \rightarrow unlike at RHIC $P(\Delta E)$ for small $\Delta E < 10 {\rm GeV}$ is probed
- \Rightarrow rise of $R_{AA}(P_T)$
- $I_{AA}^{LHC} > I_{AA}^{RHIC}$; $I_{AA}^{near} > 1$ for kinematical reasons
- additional non-trivial constraints
- \rightarrow but not easy to do 'same hydro' at larger \sqrt{s}

HYDRO FROM RHIC TO LHC

- initial state and initial time computed from pQCD minijet saturation (EKRT)
- eBC profile assumed to be unchanged from RHIC
- \rightarrow largest uncertainty for jet quenching
- 2+1d ideal hydrodynamics
- $T_F = 165$ MeV assumed to be unchanged from RHIC \rightarrow motivated by dynamical computations of scattering vs. expansion rate
- \bullet good description of ALICE P_T spectrum

PbPb 2.76 ATeV, 0-5% centrality

T. R., H. Holopainen, R. Paatelainen, K. J. Eskola, 1103.5308v1 [hep-ph]

PbPb 2.76 ATeV, 0-5% centrality

R_{AA} and I_{AA} at LHC

- P_T dependence in models very different
- \rightarrow constraints different from pathlength dependence
- if we refit to default data using $R = K_{med}^{LHC}/K_{med}^{RHIC}$ to account for hydro uncertainties (R = 1 for smooth extrapolation in \sqrt{s})

	YaJEM-D	YaJEM	ASW	AdS
R	0.92	0.61	0.47	0.31

- $\rightarrow T^4$ dependence of AdS is strongly disfavoured
- I_{AA} probes different combination of kinematical, parton type and geometrical bias \rightarrow interesting additional constraints
- \rightarrow relevant partonic subchannels very different from RHIC (qg vs gg)

SUMMARY

- \bullet medium model uncertainties are as large as energy loss model uncertainties \rightarrow no reason to expect that simplified models work
- initial state fluctuations are not a major effect
- \rightarrow important for details
- \bullet pathlength dependence rules out elastic (incoherent) component >~ 10 %
- ightarrow the medium dof are not light free quasiparticles (= large elastic eloss)
- \rightarrow quantum coherence is important
- \rightarrow finite E effects change the picture completely, need to be taken seriously
- only particular combinations of medium/eloss model are viable
- \rightarrow both L^2 and L^3 without finite E correction describe the data
- \rightarrow with finite E correction, only medium-determined Q_0 is viable, L^3 may be
- \sqrt{s} dep. provides independent constraints, but hydro extrapolation not unique \rightarrow disfavours AdS and ASW
- \rightarrow no reason to assume that strongly coupled formalisms work better
- \bullet currently YaJEM-D in 3+1d ideal hydro describes the combined data best