

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Initial State Fluctuations at RHIC and LHC: Hadronic or Partonic Origin?

Quark Matter 2011, Annecy, France 05/26/2011 Hannah Petersen

Phys.Rev. C82 (2010) 041901 J. Phys. G 38 (2011) 045102 arXiv: 1105.0340 arXiv: 1105.1766

Thanks to: Guang-You Qin, Steffen A. Bass, Berndt Mueller, Vivek Batthacharya, Christopher Coleman-Smith (poster today on board #7)

Motivation

Elliptic flow from viscous hydrodynamics+hadron transport

O 10 20 (1/S) dN_{ch}/dy (fm⁻²)
 O 10 20 (1/S) dN_{ch}/dy (fm⁻²)
 O 11/S) dN_{ch}/dy (

PRL 106, 192301 (2011)

al,

et

Sources of Fluctuations

- Density profiles are not smooth, but there are local peaks in transverse and longitudinal direction
- Impact parameter fluctuations within one specific centrality class, multiplicity fluctuations and differences in initial geometry
- Event plane **rotation** with respect to reaction plane in the laboratory
- All these effects are averaged out if assuming a smooth symmetric initial density profile

J.Steinheimer et al., PRC 77,034901,2008

Included in dynamical models of the initial state (e.g. a parton cascade, NEXUS/EPOS, UrQMD) or in Glauber or CGC Monte Carlo approaches

Initial Conditions from Dynamical Approaches

• The initial T^{µv} for hydrodynamics has to be given via:

 $\epsilon(x, y, z), p(x, y, z) \text{ and } n(x, y, z)$

- Energy deposition model needs to describe final dE_T/dy in pp and A-A correctly
- Granularity is influenced by
 - Shape of the incoming nuclei
 - Distribution of binary collisions
 - Interaction mechanism
 - Degree of thermalization

- Differences in shape and fluctuations need to be quantified
 - First attempt: use higher Fourier coefficients

Hybrid Approach

- Use advantages of transport and hydrodynamics and create combined model
- Modular Setup: Fix the hydro evolution and freeze-out

Jearn something about the influence of different initial conditions

 Non-equilibrium initial conditions via UrQMD

H.P. et al., PRC 78:044901, 2008

2) Hydrodynamic evolution

Quark Matter 2011, 05/26/201

3) Freeze-out via hadronic cascade (UrQMD)

UrQMD-3.3p1 is available at http://urqmd.org

Hannah Petersen

Initial State at RHIC

• Energy-, momentum- and baryon number densities are mapped onto the hydro grid using for each particle

$$\epsilon(x, y, z) = \left(\frac{1}{2\pi}\right)^{\frac{3}{2}} \frac{\gamma_z}{\sigma^3} E_p \exp\left(-\frac{(x - x_p)^2 + (y - y_p)^2 + (\gamma_z(z - z_p))^2}{2\sigma^2}\right)$$

 \bullet Main parameters are σ and t_{start}

• To fit yields and elliptic flow: $\sigma \sim 1 \mbox{ fm}$ and $t_{\mbox{start}} \sim 0.5 \mbox{ fm}$

201

38, 045102,

and JPG

Triangular Flow

- Collective hydrodynamic behaviour
- Responsible for most of the structures in two-particle angular correlation data?
- Without fluctuations the odd coefficients are zero

Earlier studies: NEXspheRIO, PRL 103,242301, 2009; P. Sorensen, JPG, 37, 094011,2010

From Initial to Final State

- v_n and ε_n and initial and final event plane angles are correlated on an event-byevent basis
- Confirms collective behaviour

Initial State Coordinate Space Asymmetry

$$\Phi_n = \frac{1}{n} \arctan \frac{\langle r^n \sin(n\phi) \rangle}{\langle r^n \cos(n\phi) \rangle}$$

$$\epsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}$$

Final State Momentum Space Asymmetry

$$\Psi_n = \frac{1}{n} \arctan \frac{\langle p_T \sin(n\phi_p) \rangle}{\langle p_T \cos(n\phi_p) \rangle}$$

$$v_n = \langle \cos(n(\phi_p - \Psi_n)) \rangle$$

Centrality Dependence

Hydrodynamic response stronger for elliptic flow

• Triangular flow exhibits only weak centrality dependence

Longitudinal Structure

Is this really a longitudinal long-range correlation?

- Idea: look at event plane angles in different rapidity slices
- Verify correspondence of initial to final state correlation in each bin
- Potential to distinguish *physics mechanisms* without calculating numerically expensive Δη-Δφ correlations
- New observable that could be measured

H.P. et al, arxiv:1105.0340, in collaboration with C. Greiner

Longitudinal Correlation

• Idea: look at event plane angles in different rapidity slices

 Important verification of the event plane method which relies on a single plane for the whole event

Longitudinal Correlation

- String fragmentation and final state radiation produce long-range correlations
- Gets smeared out, but is still there in the final state
- Hadron and Parton cascade rely on mechanism based on interactions
- CGC flux tubes are an initial state feature in the incoming nuclei
- How can we distinguish these two scenarios?

H.P. et al, arXiv: 1105.0340

Eccentricity Distributions

- Average eccentricity and triangularity have similar centrality dependence in parton and hadron cascade
- Probability distribution contains information about fluctuations

Eccentricity Distributions

- In UrQMD the whole probability distribution is almost identical at RHIC and LHC
- Geometry of overlap region does not change
- Higher multiplicity has no visible effect on fluctuations

Comparison to LHC data

- Exact same parameter set as applied at RHIC
- \bullet Hybrid approach is in good agreement at low p_{T}
- Different **EoS** give similar results

H.P., arXiv: 1105.1766

Triangular Flow at LHC

Quark Matter 2011, 05/26/2011

Conclusions

- Dynamic transport approaches provide fluctuating initial conditions
- Parameters for initial conditions can be constrained by looking at bulk observables as yields, spectra and elliptic flow
- Triangular flow only occurs if event-by-event fluctuations are included
- Triangular flow might be a good measure for initial state granularity (in addition to other correlation/fluctuation observables)
- Longitudinal correlation of event plane angles can also be generated by radiation processes in parton cascade
- LHC results from event-by-event hydro are similar to RHIC
- Systematic comparison of different initial state models is needed to draw quantitative conclusions

Backup

Parameter Sensitivity Tests

Emulated N(Pi+) at mid rapidity

- Sophisticated statistical analysis
- Emulator predicts results of calculations for parameter sets by means of advanced statistics
- Number of pions in the $t_{\text{start}}\text{-}\sigma$ plane
- Determine reasonable
 combinations of
 parameters

Thanks to Chris Coleman-Smith, MADAI collaboration

Averaged IC & Lattice EoS

- Averaged conditions give very similar results for spectra and elliptic flow see also H.P., M. Bleicher, PRC 81, 044906, 2010
- Realistic equation of state:
 - $-m_T$ spectra better reproduced
 - similar elliptic flow results
- Freeze-out procedure has to be improved (work in progress)

From Initial to Final State

- Φ_n is calculated in initial coordinate space
- Ψ_n from **final** momentum space distribution
- There is a strong
 correlation between the two angles
- For elliptic flow stronger in more peripheral events

$$\frac{1}{n}\arctan\frac{\langle r^n \sin(n\phi)\rangle}{\langle r^n \cos(n\phi)\rangle} \longrightarrow \Psi_n = \frac{1}{n}\arctan\frac{\langle p_T \sin(n\phi_p)\rangle}{\langle p_T \cos(n\phi_p)\rangle}$$

H.P. et al., PRC 82, 041901, 2010, arXiv:1008.0625

 $\Phi_n =$

Event Plane Angles

- Ψ_2 is **correlated** to reaction plane
- Ψ_3 distribution is flat
- Only fluctuations, no geometry in contrast to elliptic flow where both are mixed
- Triangular flow can be used for measuring granularity

Centrality Dependence

- Hydrodynamic response **stronger** for elliptic flow
- Triangular flow exhibits only weak centrality dependence

Transverse Momentum Dependence

- Central Collisions: v₂ ≈v₃
- Mid-central collisions: v₂≈ 2·v₃
- Mass splitting for identified particles

Two-Particle Correlation

- v₂/v₃ values are very similar, when they are extracted from two-particle correlations
- Identified particles might be helpful to disentangle different contributions to $\Delta \varphi$ -correlations

Longitudinal Correlation

- Calculate overall event plane angle and angle in each bin
- Look at the distribution of the differences of these angles

 [→] There is a correlation in the initial state generated by string fragmentation
 → Stronger at midrapidity
 → Gets smeared out during hydro evolution

Compare to **parton cascade** initial conditions to explore a different initial scenario

H.P. et al, arXiv: 1105.0340

PCM Initial State

- Time-like branchings following binary scattering also introduce long-range longitudinal correlation
- Not **unique** to flux tube/string picture

H.P. et al, arXiv: 1105.0340

Eccentricity Distributions

- Initial eccentricity and triangularity are very similar in hadron and parton cascade
- The mean value of the eccentricity is a bit larger in UrQMD for non-central collisions, but the fluctuations are similar in both approaches

Eccentricity Distributions

- Initial eccentricity and triangularity are very similar in hadron and parton cascade
- The mean value of the eccentricity is a bit larger in UrQMD for non-central collisions, but the fluctuations are similar in both approaches

Spectra at LHC

• Hybrid works well for pt<3 GeV

Triangular Flow at LHC

Outlook - 'Measuring' Granularity ?

- Different granularities by averaging over 1,2, 5, 10, ... 100 events that can be quantified
- Yields, spectra and elliptic flow are identical
- Triangular flow ranges from zero (smooth) to a few percent

Outlook

	Dynamic Approach	Parametrization
Hadron - based	Hadron Cascade (UrQMD)	Monte Carlo Glauber
Parton- based	Parton Cascade (PCM)	CGC, KLN MC

- Characterize differences by looking at shapes and harmonic coefficients and their fluctuations
- Use the same dynamical model to explore effect on bulk observables and anisotropic flow
- Energy and system size dependence will be studied