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 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Further effects...

 initial anisotropic flow

 anisotropic differential cross-section

 non-Gaussian initial spatial distribution
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Far-from-equilibrium anisotropic flow:
onset of collectivity

(a 15-minute summary of)  N.B. & C.Gombeaud, Eur. Phys. J. C 71 (2011) 1612
+ work in progress
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Far-from-equilibrium anisotropic flow:
a warning

 Fits to experimental data (no η/s!)

I shall present toy models, with 1 or 2 parameters only: 

 my purpose is to identify qualitative behaviors

 (+ understand the origin of these behaviors... & have fun?)

 Pocket formulae

A few things you should not expect to find in this talk

dear convenor, don’t worry!
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Anisotropic flow
In non-central nucleus-nucleus collisions, the initial spatial asymmetry 
of the overlap region in the transverse plane is converted by particle 
rescatterings into an anisotropic transverse-momentum distribution of 
the outgoing particles: anisotropic (transverse) flow.
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Anisotropic flow
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 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Further effects...

 initial anisotropic flow

 anisotropic differential cross-section

 non-Gaussian initial spatial distribution
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Far-from-equilibrium anisotropic flow:
onset of collectivity



N.Borghini — 6/27Quark Matter 2011, Annecy, May 23-28, 2011

The model
 System: 2-dimensional dilute mixture of components with masses mi, 

mk…, which scatter elastically on each other with an isotropic and 
constant differential cross-section    .

 2-dimensional: I’m only interested in the transverse expansion.

     isotropic, constant,    -independent: a single parameter!

 dilute system: kinetic description à la Boltzmann is meaningful.

 distribution functions             ,             . 

σd

σd pT

fi(t,x,pi) fk(t,x,pk)
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The model

R2
x < R2
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 Initial condition (t = 0): isotropic distribution    in momentum space, 
asymmetric distribution in position space (identical for i and k).

 in position space: Gaussian profile with mean square radii           .

     normalized to                          .
� ∞
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The model

Once the distribution function        is known, the (transverse-)
momentum spectrum

at time t follows at once.

One can thus obtain the time-dependence of the anisotropic flow 
coefficients           .

The usual, experimentally accessible harmonic         is the large-time 
limit                  .

f(t,x,pT )

d2N

d2pT
(t,pT ) =

�
d2x f(t,x,pT )

vn(t, pT )

vn(pT )

(t → ∞, pT )vn

(independent of the choice of particle masses)
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The model: evolution equation
(independent of the choice of particle masses)

∂fi
∂t
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−
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Gain and loss terms: 

with      the relative velocity.
∼ fi(t,x,pi) fk(t,x,pk) vikσd

vik

vik =

�
(vi − vk)2 −

(vi × vk)2

c2
In general                                      , but we won’t need that...



Integrating the evolution equation

over x, the gradient part disappears: 

Then                                                                 …easy, no?
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The model: evolution equation
(independent of the choice of particle masses)
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The model: first solution
(independent of the choice of particle masses)

If there are no rescattering between i and k particles:     = 0.σd

∂fi
∂t

+ vi ·∇xfi = 0

   free-streaming solutions: 

f (0)
i (t,x,pi) = f (0)

i (0,x− vit,pi)

If one starts with an isotropic distribution in momentum space, it 
remains so as the system evolves: no anisotropies develop...

vn(t, pT ) = 0  at all times
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Let’s turn on the rescatterings...
(independent of the choice of particle masses)

fi(t,x,pi) = f (0)
i (t,x,pi) + f (1)

i (t,x,pi) + · · ·

... but only few of them!

New solution: 

with              , and so on.  

    momentum anisotropies of     are those of     . 

f (1)
i � f (0)

i

fi f (1)
i

*
 small parameter in the expansion: ≈ σd (divided by R, for dimensional reasons)

*
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... but only few rescatterings
(independent of the choice of particle masses)

             : need to ensure a small number of scatterings per particle.

Collision rate:                                                 , which should be

integrated over the whole evolution, with    =     , and be kept small.

f (1)
i � f (0)

i

f (0)
ifi
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Simple model: Lorentz gas
 massless diffusing particles:  |vi| = c

 fixed scattering centers:  |vk| = 0

vik = c …much easier!

In particular, vik is independent of the particle azimuths. 
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Lorentz gas: further simplification
The momentum anisotropies of    are those of     .

 the loss term of the evolution equation does lead to anisotropies:  
the number of particles with azimuth   lost in a rescattering is 
directly related to the initial geometry.

fi f (1)
i

ϕi

 the gain term of the evolution equation does NOT (to leading order)
lead to anisotropies in the case of an isotropic cross-section:
it involves the distribution functions before the rescatterings, while 
the azimuth     is that of the outgoing momentum.ϕi

∂vn
∂t

(t, pi) ∝ −
�
d2x dϕi
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∂fi
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loss

cosnϕi
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Anisotropic flow of a Lorentz gas:
phenomenological relevance?

 A gas of massless diffusing particles scattering on infinitely massive 
  centers is the (regular) limiting case for light particles scattering on 
  massive ones.

  Invoking (local) momentum conservation at each scattering, this also 
  describes the flow of massive particles in a wind of light ones.

 Considering a single rescattering may be relevant for particles/states
that are “destroyed’’ after a single collision: 

high-momentum particles, which lose a sizable amount of their 
momentum, thus are gone from their initial pT bin;

fragile states (quarkonia? ϕ-meson?).

Obvious(?): photons(?)



 Rescattering rate:

 Anisotropic flow evolution:

The integrals over x, Θ,    , |pk| are easy or even trivial!ϕk

dNcoll

dt
=
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d2x d2pi d
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Simple model: Lorentz gas
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Lorentz gas: number of rescatterings
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 Rescattering rate:

so that the total number of rescatterings is (K: elliptic integral)
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Lorentz gas: number of rescatterings
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 Rescattering rate:

so that the total number of rescatterings is (K: elliptic integral)

i.e. maximal for central collisions [            ] at a given cross-section:
the choice

ensures at most one rescattering per diffusing particle for all  .
   
    consistency of the approach!
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Lorentz gas: anisotropic flow

dvn
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(do not forget the — sign from our considering the loss term!)

 Anisotropic flow (even harmonics):



 behavior already seen in transport codes (Gombeaud & Ollitrault);

 differs from the slower rise       in fluid dynamics.∝ tn

t � 2R

c
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Lorentz gas: anisotropic flow
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(do not forget the — sign from our considering the loss term!)

 Anisotropic flow (even harmonics):
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Lorentz gas: anisotropic flow
vnIntegrating       from t = 0 to ∞, one obtains    , e.g.dvn

dt
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Requiring at most one rescattering per diffusing particles, i.e. fixing σd 
to                      , gives the parameter-free resultσmax
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Lorentz gas:
Centrality dependence of v2
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Lorentz gas:
Centrality dependence of v2

Glauber optical model to relate b and �

large?
don’t take it
too seriously!



 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Further effects... more parameters!

 initial anisotropic flow

 anisotropic differential cross-section

 non-Gaussian initial spatial distribution

 …
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




not shown today!

Far-from-equilibrium anisotropic flow:
onset of collectivity

here, the gain term plays a role!



(side-remark: including wk,s might account for Ψ2 ≠ Ψ3 ≠ …)

 Initial condition (t = 0): anisotropic distribution   in momentum space, 
asymmetric distribution in position space (identical for i and k).

 anisotropic initial distribution in momentum space

    normalized to                           .

 in position space: Gaussian profile with mean square radii           
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The next model
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 Rescattering rate:

 Anisotropic flow evolution:
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Lorentz gas with initial flow
The computation proceeds as before:

dNcoll

dt
=

NcNσdc

2R2

�
1− �2 e−c2t2/4R2

�
I0

�
c2t2

4R2
�

�
+2

�

q≥1

(−1)qw2q,cIq

�
c2t2

4R2
�

��

∂v2m+1

∂t
(t) = (−1)m+1Ncσdc

2R2

�
1− �2 e−c2t2/4R2

×
�

q≥1

(−1)qw2q−1,c

�
Im+q

�
c2t2

4R2
�

�
+ Im−q

�
c2t2

4R2
�

��

∂v2m
∂t

(t) = (−1)m+1Ncσdc

2R2

�
1− �2 e−c2t2/4R2

×
�
Im

�
c2t2

4R2
�

�
+

�

q≥1

(−1)qw2q,c

�
Im+q

�
c2t2

4R2
�

�
+ Im−q

�
c2t2

4R2
�

���

v2m

v2m+1



 Anisotropic flow development at early times 

 elliptic flow:

 - evolves even if there is no spatial asymmetry (  = 0)!

 - might decrease (if w2,c = v2(t = 0) > 0) before increasing; 

 triangular flow:

depends on odd harmonics only.
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Lorentz gas with initial flow
t � R/c
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 Do you need many collisions to build up “collective behavior”? 

NO! already significant(?) flow after a single collision

 Further ingredients (initial anisotropic flow, anisotropic differential 
cross-section...) provide a wealth of possible behaviors:
 creation of anisotropic flow for   = 0;
 non-monotonic evolution of anisotropic flow;
 mixing of different harmonics.
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Far-from-equilibrium anisotropic flow:
onset of collectivity

�



extra slides
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Black curves (full: ‘‘LDL’’, dashed: hydro) and points (RQMD 2.3) from 
Voloshin & Poskanzer, Phys. Lett. B 474 (2000) 27

Lorentz gas:
Centrality dependence of v2



The model: initial condition
Remarks on the Gaussian profile
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