Jet Reconstruction and Jet Background Classification with the ALICE-Experiment in Pb+Pb collisions at the LHC

Quark Matter 2011 Annecy

Christian Klein-Bösing for the ALICE Collaboration

Motivation

- Jets in pp closely related to parton properties
 - Reduced bias compared to single particle jet-like properties
- In Pb-Pb jets provide more direct access to medium modified parton fragmentation process
 - Change of transverse and longitudinal jet structure
 - Is it there at all? Or do jets simply heat system?

- Essential for interpretation of jet observables, discern
 - medium influence on partons
 - and underlying event influence on jet reconstruction

Jet Reconstruction in pp with ALICE

- 2009/2010
 - pp @ 0.9 and 7 TeV
 - Pb-Pb @ 2.76 TeV
 - Based on charged tracks | n | < 0.9
 - $|\eta_{\text{iet}}| < 0.5$
- 2011
 - pp @ 2.76 and 7 TeV
 - Fully installed EMCAL
 - Charged + neutral

Jet finding with charged tracks in pp well understood. All jet finders agree for $p_T > 20$ GeV, reproduced in full simulation

Jet Finding in Pb-Pb with ALICE

- Focus on sequential recombination
 - FastJet (Phys. Lett. B 641 (2006) 57)
 - k_⊤: background density
 - anti-k_⊤: stable area, signal jets
- Clustering on particle level
 - ALICE TPC: high precision, uniform ηφ-efficiency
- Low momentum cut off (150 MeV)
- Stronger affected by fluctuations

ALICE:

Minimize bias on hard fragmentation/unquenched. Resolve the detailed structure of jets and jet background sources.

Background Subtraction:

$$\mathbf{p}_{\mathsf{T},\mathsf{jet}} = \mathbf{p}_{\mathsf{T},\mathsf{jet}}^{\mathsf{rec}} - \rho \times \mathbf{A}_{\mathsf{jet}} \pm \sigma \times \sqrt{\mathbf{A}_{\mathsf{jet}}}$$

- ρ: Median of p_T/area, determined event
 by event via k_T clustering
 - Here k_T clusters $|\eta| < 0.5$, excluding two leading clusters
 - Advantage: Robust statistical measure
- σ: background fluctuation needs unfolding
- Typical size for R = 0.4: $A \approx 0.5$
 - 50 100 GeV/c background for 0-10%

Strong change within central bin.

Background Subtraction:

$$\mathbf{p}_{\mathsf{T,jet}} = \mathbf{p}_{\mathsf{T,jet}}^{\mathsf{rec}} - \rho \times \mathbf{A}_{\mathsf{jet}} \pm \sigma \times \sqrt{\mathbf{A}_{\mathsf{jet}}}$$

- ρ: Median of p_T/area, determined event
 by event via k_T clustering
 - Here k_T clusters $|\eta| < 0.5$, excluding two leading clusters
 - Advantage: Robust statistical measure
- σ: background fluctuation needs unfolding
- Natural connection of ρ to event properties/ characteristics of p_T spectrum
 - $\rho \approx N < p_T >$

Linear correlation with input raw multiplicity.

Raw Charged Jet Spectra Below 100 GEV

Jets with low p_T track cut-off (150 MeV/c)

Jets with high p_⊤ track cut-off (2 GeV/c)

Spectral shape strongly affected by fluctuations for low p_T cut off. Trade-off between bias from background fluctuation and bias on fragmentation.

Quantification of Background Fluctuations

Residuals of well defined probes put into real Pb-Pb events

$$\delta \mathbf{p_T} = \mathbf{p_{T,rec}} - \mathbf{A} \cdot \rho - \mathbf{p_{T,probe}}$$

- Probes:
 - Random cones (Fixed area!)
 - Using full jet acceptance (< 0.5)
 - Excluding area around 2 leading jets (D > 1.0)
 - In randomized event
 - Embedded single particles
 - Delta probe for jet finding (high p_T seed, robust area)
 - Embedded jets from full detector simulation p+p @ 2.76 TeV (PYTHIA+GEANT)
 - Embedded quenched jets

Different methods to test specific influences of background, i.e. event properties vs. jet finder specific back-reaction.

no bias, no back-reaction

largest bias, largest back-reaction

Random Cones (0-10%)

- Σp_T in random cone R = 0.4
- Right hand side tail
 - Smaller for randomized ηφ
 - Smaller when leading jets are excluded
- Left hand side tail
 - Insensitive to jet removal
- Iterative Gaussian fit:
 - Measure of width of LHS only
 - Lower limit on total fluctuation
 - Visualize non Gaussian fluctuations

Right side: Jet origin Left side: Correlated region-to-region fluctuations

Random Cones (50-80%)

- Iterative Gauss lower limit for all region-to-region fluctuations
- Non Gaussian contribution for lower multiplicities and due to shape of p_T spectrum
 - Other measures:
 - RMS
 - Quartile ranges (robust statistics)

Right side: Jet origin

Left side: Region-to-region fluctuations

Comparing Different Probes (0-10%)

- Random cones
- Embedding of single high p_T tracks
- Embedding of fully simulated PYTHIA jets
- Jet spectrum scaled to 20 GeV
 - Like embedding p_T ≈ 0 probe
 - Shows little separation of jet signal below 100 GeV

General agreement between all methods, Background subtraction works: $\mu \approx 0$ Shape of "jet" spectrum similar.

Charged Background Evolution with Centrality

Stable background subtraction, fluctuations larger than pure Poissonian limits:

$$\mathsf{RMS}(\delta \mathsf{p}_\mathsf{T}) = \sqrt{\mathsf{N}} \cdot \sqrt{\langle \mathsf{p}_\mathsf{T}
angle^2 + \mathsf{RMS}(\mathsf{p}_\mathsf{T})^2}$$

Charged Background Fluctuations Evolution with Multiplicity

Expected increase with raw number of inputtracks, almost 70% in 0-10% centrality

Poissonian limits from raw p_T spectrum

Efficiency corrected (Ideal detection):
Larger <N>, change in <p_T> and RMS(p_T)

→ 8% increase in fluctuations, but also improved jet signal

Randomized events approach limit (N.B. rho taken from real event).

Event Plane Dependent Jet Background

Event wise ρ estimate does not account for region-to-region correlated soft background:

- Change of N and <p_T>, i.e.due to collective flow
- Essential to study path-length dependence of jet quenching.

*event plane determined with tracks: possible jet bias

Significant shift of background jet energy scale, depending on orientation to event plane. One source of broadening.

Event Plane Dependent Background: Evolution of Mean

Large change inbackground subtracted jet energy scale. N.B: Effect scales with $\approx v_2 * \Sigma p_T$, hence still important for central collisions.

Event Plane Dependence: Evolution of Width

Width reduced compared to inclusive fluctuation, similar for all EP bins, ordering explained by change of $\langle p_T \rangle$, $\langle N \rangle$. (additionally washed out by size of jet).

Summary and Outlook

- Understanding of jet background and its fluctuation essential for understanding of jet modification in heavy ion collisions
 - Direct impact e.g. on jet asymmetry (See e.g. Cacciari et. al arxiv:1101.2878) and understanding of energy dissispation
- First detailed assessment of (charged) background fluctuations in Pb-Pb collisions at the LHC
 - Gaussian width of fluctuation > 10 GeV/c in central PbPb
 - Non-Gaussian tail of fluctuations challenging for unfolding
- Region-to-region correlations change the background energy scale
 - Basis for improved jet background resolution
 - Important for path-length dependent jet measurement
- Next: Unfolded charged jet spectra in Pb-Pb for low jet p_T
- pp reference at 2.76 TeV with full calorimetry

BACKUP

Backup: ATLAS Fragmentation

Backup:

p_T Dependence Jet Embedding

Effect in jet embedding depends on embedded jet p_T.
Global width unaffected.

Backup: Different Probes vs. Centrality:

Right side tail shape similar to jet finding output.

LHS: Bump developing in jet embedding: Back reaction.

Reason: Large Jets in p+p

- Rare case in p+p: jet with 2 hard radiated particles at distance ≈ D
 - Cones around 2 similar seeds can merge (Salam et. al. arxiv 0802.1189)

Heavy ion background leads to splitting into regular sized objects: Back reaction.

Change in Jet Area and Direction

Rare fragmentation pattern and anti- k_T treatment of two similar seed particles at distance ${}^{\sim}R$ leads to too large p+p jets which are split in the presence of heavy ion background.

Large changes in area of embedded jets: Caused be splitting, seen a of jet axis Christian Klein-Bösing

RMS vs Gaussian Fit

Points from

Poissonian multiplicity fluctuation in cone with R = 0.4 + sampling of p_T distribution.

Average event p_T per unit area subtracted.

Backup:

Different Track p_T Cuts (0-10%)

track p _T cut	average ρ
0.15 GeV/c	136 GeV/c
1.0 GeV/c	61 GeV/c
2.0 GeV/c	13 GeV/c

- reduction of soft background by track p_T cut also visible in background fluctuations
- methods work also with high- p_T cut off (μ close to 0)
- Tail more pronounced

Track Selection

- TPC SA+vtxSPD
 - TPC only track parameters
 - constrained to SPD vertex
- Advantage:
 - Maximum uniformity in η-φ
 - Improved momentumresolution compared to TPCSA, but worse that ITS+TPC
 - Essential for:
 - Correlation studies, Di-Jets
 - Unbiased background estimates

p_T Resolution ITS+TPC Tracking

Factor 2 improvement soon

Background studies used TPC tracks constrained to ITS-Vertex (Maximum ϕ uniformity, worse resolution at high p_{τ})

Backup: φ Distribution Toy MC with φ-Hole

Backup: Background influence on jet η Distribution in Pb+Pb

Does the effect vanish when background no longer dominates. What is the influence on the yield in $|\eta| < 0.4$

- Structure in η at edge of acceptance
 - becomes weaker with increasing jet p_T but lacks statistics
 - Becomes weaker in more peripheral events
 - Also present in randomized HI event
- Toy MC for tests in larger acceptance

After Background Subtraction

Residual structures visible, dominant at low p_T . No Effect on the yield beyond $\approx 30 \text{ GeV}$ for the signal + thermal.