Resonances measurement

 in pp and $\mathrm{Pb}-\mathrm{Pb}$ collisions with the ALICE detector

INFN L

Alberto Pulvirenti

INFN Catania

for the ALICE Collaboration

Outline

- Introduction
- motivations
- the ALICE detector
- Analysis
- Results
- pp @ $\sqrt{s}=7 \mathrm{TeV}$
- $\mathrm{Pb}-\mathrm{Pb} @ \mathrm{~S}_{\mathrm{NN}}=2.76 \mathrm{TeV}$
- Conclusions
- Event structure
- investigating hadron formation mechanisms
- tune QCD-inspired models
- basic method to describe the soft part of the underlying event
- Baseline for understanding $\mathrm{Pb}-\mathrm{Pb}$ results
- masses and widths
- ratios to stable particles

	Mass $(M e V)$	Width (MeV)	ct(fm)	Decay
$K^{*}(892)^{0}$	896	50	4	$K \pi$
$\varphi(1020)$	1019	4	46	$K K$
$\Sigma(1385)$	1385	33	6	$\wedge \pi$
$\equiv(1530)$	1530	9	22	$\equiv \pi$

Resonance / stable particle ratios
\rightarrow estimate fireball temperature and lifetime
G. Torrieri and J. Rafelski, Phys. Lett. B509 (2001), 239

Chiral symmetry restoration
\rightarrow modifications in mass and/or width
R. Rapp and J. Wambach, Adv. Nucl. Phys. 25 (2000), 1

detailed talk: J. Schukraft

INFN
 Event and track selection

- Event selection
- selected (for different resonances) $25 \div 155$ * $10^{6} \mathrm{~min}$. bias events
- primary vertex reconstructed with tracks or SPD tracklets $\left(\left|V_{Z}\right| \leq 10 \mathrm{~cm}\right)$
- Track selection
- quality \rightarrow optimize momentum resolution
- particle identification \rightarrow minimize background
p_{T} range of separation within $3 \sigma(\mathrm{GeV} / \mathrm{c})$

	TPC	TOF
π	$0.2 \div 0.7$	$0.5 \div 2.0$
K	$0.3 \div 0.6$	$0.5 \div 2.0$
P	$0.5 \div 1.0$	$0.5 \div 2.5$

see talk from A. Kalweit

- Fit: poly + Breit-Wigner convolution with Gaussian (= "Voigtian")
- take into account inv. mass resolution
- estimate from $M C$ ($\left.\varphi: \sim 1 \mathrm{MeV} / c^{2}\right)$
- Raw counts: Voigtian full integral

		$\boldsymbol{\varphi}(\|y\| \leq 0.5)$	$\mathbf{E}^{*}(\|y\| \leq 0.8)$
PT bin	$(\mathrm{GeV} / \mathrm{c})$	$0.7-0.8$	$1.2-1.6$
PDG Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	1019.46	1531.8
PDG Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4.26	9.1
Fit Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	1019.30 ± 0.10	1531.5 ± 0.4
Fit Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4.52 ± 0.01	Fixed to PDG
Fit σ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Fixed to 1.2	2.0 ± 0.5

- Subtract like-sign background
- Fit: Breit-Wigner + straight line
- Raw counts: BW full integral
- Rapidity range: $|y| \leq 0.5$

PT bin	$(\mathrm{GeV} / \mathrm{c})$	$2.0-2.5$
PDG Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	895.9
PDG Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	48.7
Fit Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	893.4 ± 0.5
Fit Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	54.0 ± 2.0

- Fit: Gaussian + negative power law
- Subtract background function
- Raw counts: bin count
- 3σ around peak center.
- Rapidity range: $|y| \leq 0.8$

PT bin	$(\mathrm{GeV} / \mathrm{c})$	$0.7-0.8$	
PDG Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$1382.8\left(\Sigma^{\star+}\right)$	
$1387.2\left(\Sigma^{\star-}\right)$			
PDG Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$35.8\left(\Sigma^{\star+}\right)$	
Fit Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$139.4\left(\Sigma^{\star-}\right)$	
Fit Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	33 ± 1	

三* efficiency includes also reconstruction efficiency for previous decay steps (\equiv decay reconstruction)

Normalized to INEL
(talk by K. Oyama)

Systematics

- PID cuts
- topological selection (三*)
- background subtraction
- material budget
- track selection
- normalization

Fit: Levy / Tsallis function
$\frac{d^{2} N}{d y d p_{T}}=\frac{(n-1)(n-2)}{n T[n T+m(n-2)]} \times \frac{d N}{d y} \times p_{T} \times\left(1+\frac{m_{T}-m}{n T}\right)^{-n}$
$d N_{\varphi} / d y$ increases proportionally to $\mathrm{dN}_{\mathrm{ch}} / \mathrm{dy}$ from 900 GeV to 7 TeV

\sqrt{s}	$\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$	$\mathrm{dN} / \mathrm{dy}$	T	n
900 GeV	1.00 ± 0.24	0.021 ± 0.005	164 ± 91	4.2 ± 2.5
7 TeV	1.112 ± 0.02	0.0334 ± 0.0008	286 ± 14	7.0 ± 0.6

$\mathrm{P}_{\mathrm{T}} \leq 2 \mathrm{GeV} / \mathrm{c}$: good agreement with PYTHIA D6T $\mathrm{P}_{\mathrm{T}} \geq 2 \mathrm{GeV} / \mathrm{c}$: good agreement with PHOJET

Yellow band:
data systematics

All p_{T} : good agreement with PYTHIA D6T

Yellow band:
data systematics

All p_{T} : underestimated

- Smaller signal / background
- tighter Particle ID cuts with TPC and TOF
- require TOF for tracks with $\mathrm{p}_{\mathrm{T}}>600 \mathrm{MeV} / \mathrm{C}$
- subtract like-sign background
- Fit: Voigtian + polynomial
- Raw counts: Voigtian full integral

PT bin $\quad(\mathrm{GeV} / \mathrm{c})$	$1.2-1.6$	
PDG Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	1019.46	
PDG 「	4.26	
$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$		
Fit Mass	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	1019.03 ± 0.02
Fit Γ	$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4.75 ± 0.06

Extracted φ signal in 14 bins for $0.5 \leq p_{T} \leq 5 \mathrm{GeV} / \mathrm{c}$

- Measured $\mathrm{dN} / \mathrm{dp}_{\mathrm{T}}$ for $\varphi, \mathrm{K}^{\star}$ and 三* at mid-rapidity in pp collisions at $\sqrt{ }=7 \mathrm{TeV}$
- Measured spectra have been compared with MC
- φ well reproduced by PYTHIA D6T below $2 \mathrm{GeV} / c$, by PHOJET above
- K^{*} well reproduced by PYTHIA D6T
- ミ* underestimated by a factor ~5 in all cases
- Ratios to stable particles don't increase w.r. to lower energy values
- even φ / π saturates
- Analysis of $\mathrm{Pb}-\mathrm{Pb}$ collisions started, need to deal with a higher background
- tightened PID cuts
- extracted φ signal for $0.5 \leq \mathrm{pT} \leq 5 \mathrm{GeV} / \mathrm{c}$
- Outlook:
- finalize Σ^{*} analysis in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$
- finalize φ in $\mathrm{PbPb}\left(\rightarrow \mathrm{R}_{C P}\right)$
- More results on resonances in ALICE @ QM2011:
- talk (A. De Falco): measurement of $\varphi \rightarrow \mu \mu$ at forward rapidity $(2.5 \leq y \leq 4)$
- poster (A. Karasu Uysal, B. Dönigus): measurement of $\Delta(1232)$ and $\Lambda(1520)$
- poster (D. Madagodahettige Don, F. Blanco): φ, K^{*} correlation with leading particle

Thank you!

> Physics Selection
\checkmark get number of good min-bias events

- estimate background events
> Van der Meer scans 2010
\diamond measured cross section for events which raise a signal in both ALICE collision point detectors (VZERO)
\diamond estimated INEL and min-bias cross-sections
\Rightarrow Final estimate: $N_{\text {INEL }}=N_{M B}^{*} \sigma_{\text {INEL }} / \sigma_{M B}$
- Multiplicity distributions from several detectors (VZERO, SPD, TPC) after Physics Selection
- Recalibrate variables
- channel-to-channel linearize VZERO to SPD
- Correct SPD for V_{Z} dependence
- Fit with simulation based on MonteCarlo Glauber model
- anchor point at 90% of total Glauber cross section

Candidate Ξ

Minimum transverse decay radius
DCA to primary vertex ${ }^{\text {a }}$
DCA between V0 daughter tracks Cosine of V0 pointing angle DCA of V0 to primary vertex V0 invariant mass Vo invariant mass
DCA between V0 and bachelor track Cosine of cascade pointing angle Cascade invariant mass Cascade invariant mass
${ }^{\mathrm{a}}$ for bachelor and each V0 daughter.

	$>0.2 \mathrm{~cm}$
$>0.01 \mathrm{~cm}$	
$<0.5 \mathrm{~cm}$	
>0.97	
$>0.001 \mathrm{~cm}$	
$>1110 \mathrm{MeV} / c^{2}$	
$<1122 \mathrm{MeV} / \mathrm{c}^{2}$	
$<3.0 \mathrm{~cm}$	
>0.85	
$>1315 \mathrm{MeV} / c^{2}$	
$<1327 \mathrm{MeV} / \mathrm{c}^{2}$	

Candidate Λ

DCA between V0 daughter tracks	$<0.50 \mathrm{~cm}$
Cosine of V0 pointing angle	>0.99
DCA of V0 to primary vertex	$<0.3 \mathrm{~cm}$
V0 invariant mass	$>1110 \mathrm{MeV} / c^{2}$
V0 invariant mass	$<1122 \mathrm{MeV} / \mathrm{c}^{2}$

TPC cuts depend on the momentum $\mathrm{p}_{\text {TPC }}$ at the inner edge of the detector barrel TOF cuts depend on the momentum p_{v} at the primary vertex

	TPC	TOF
φ	$\begin{aligned} & \mathrm{P}_{T P C}<350 \mathrm{MeV} / \mathrm{c}: 5 \sigma \\ & \mathrm{P}_{T P C}>350 \mathrm{MeV} / \mathrm{c}: 3 \sigma \end{aligned}$	3\%
K^{*}	it TOF is matched: $\mathbf{5 \sigma}$ if TOF is not matched: - $\mathrm{P}_{\mathrm{TPC}}<350 \mathrm{MeV} / \mathrm{c}: 5 \sigma$ - $\mathrm{P}_{\text {TPC }}$ in $350 \div 500 \mathrm{MeV} / \mathrm{C}: 3 \sigma$ - $\mathrm{P}_{\mathrm{TPC}}>500 \mathrm{MeV} / \mathrm{C}: 2 \sigma$ - (kaons: up to $700 \mathrm{MeV} / \mathrm{c}$)	$\begin{aligned} & \mathrm{P}_{\mathrm{V}}<1.5 \mathrm{GeV} / \mathrm{c}: 3 \sigma \\ & \mathrm{p}_{\mathrm{V}}>1.5 \mathrm{GeV} / \mathrm{c}: 2 \sigma \end{aligned}$
三t	pions: 4 σ protons with $\mathrm{P}_{T P C}<700 \mathrm{MeV} / \mathrm{c}$: 5 σ protons with $\mathrm{P}_{T P C}>700 \mathrm{MeV} / \mathrm{c}$: 5 σ	UNUSED

