# ${\rm K^0_s K^0_s}$ correlations in 7 TeV proton+proton collisions from the ALICE experiment at the LHC



Tom Humanic
Ohio State University

**QM 2011**Monday, May 23, 2011



## Motivation for studying K<sub>s</sub>K<sub>s</sub> correlations in ALICE

- $K_s^0$  is a different kind of boson -> complements  $\pi\pi$  and charged KK studies and extends  $k_T$  to higher values
- K<sup>0</sup><sub>s</sub> is uncharged so no final-state Coulomb effects
- previous K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> studies suffered from a lack of statistics
  - -- in ALICE, high energy and long running periods allow better statistics

### Results from other experimental K<sub>s</sub>K<sub>s</sub> Bose-Einstein studies

\* e<sup>+</sup>e<sup>-</sup> and e<sup>±</sup>p collisions (figure from Phys.Lett.B652:1-12,2007)



\* Au+Au collisions at  $sqrt(s_{NN}) = 200 \text{ GeV} (RHIC)$ 

STAR 
$$K_s^0 K_s^0$$
 R<sub>inv</sub> = 4.09 ± 0.46 ± 0.31 fm ,  $\lambda$  = 0.92 ± 0.23 ± 0.13 Phys. Rev. C74:054902 (2006)

 $\rightarrow$ The present  $K_s^0K_s^0$  study is the first to show source parameters for p+p collisions and for different multiplicity and  $k_T$  bins

#### $K_{s}^{0}$ identification (from $V_{0} \rightarrow h^{+}h^{-}$ )

Fit a Quadratic + Gaussian to the K<sup>0</sup><sub>s</sub> mass peak and take the Quadratic to represent the background

Purity  $\rightarrow$  P = G/(Q+G), calculated in the range 0.49 < mass < 0.504 GeV





#### Identity of the "mystery peak" in $K_s^0 K_s^0$ real distribution



From PDG:  $f_2'(1525)$ 

mass =1525  $\pm$  5 MeV/c<sup>2</sup>  $\Gamma$  = 73  $\pm$  6 MeV/c<sup>2</sup>

Main decay mode

 $f_2'(1525) \rightarrow KK (89\%)$ 

Use PYTHIA with the Perugia-0 tune to model the baseline for K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> C(Q<sub>inv</sub>) as was done for ππ (apply ±10% syst. error)

Quadratic fits to PYTHIA to extract baseline parameters for C(Q<sub>inv</sub>)

$$C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^{2}\}$$

$$\times F(Q_{inv})$$

where  $F(Q_{inv})$  is the femtoscopic part containing, in general, quantum statistics and strong interaction effects which depend on  $R_{inv}$  and the  $\lambda$  parameter.





## Gaussian fits to PYTHIA to extract baseline parameters for C(Q<sub>inv</sub>)

$$C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\}$$

$$\times F(Q_{inv})$$





## ALICE data 7 TeV p+p

## Gaussian fits to data C(Q<sub>inv</sub>) with Quadratic PYTHIA baseline

$$C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^{2}\}$$
  
  $\times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^{2}]\}$ 





## ALICE data 7 TeV p+p

## Gaussian fits to data C(Q<sub>inv</sub>) with Gaussian PYTHIA baseline

$$C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\}$$
  
  $\times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$ 



#### Lednicky fit to data to take into account the a<sub>0</sub>/f<sub>0</sub>resonance

#### in K<sup>0</sup>K<sup>0</sup> channel

- \* A strong final-state interaction has an important effect on neutral kaon correlations due to the  $f_0(980)$  and  $a_0(980)$  resonances which contribute to the  $K^0K^0$ -bar channel.
- \* Use the Lednicky & Lyuboshitz analytical model and code to take into account this strong FSI assuming s-wave scattering: (R. Lednicky and V.L. Lyuboshitz, Sov.J.Nucl.Phys. 35,770 (1982))
- \* The code assumes a Gaussian distribution of the  $K^0$  source points, and so one fits the model to the experimental correlation function to extract the Gaussian R and  $\lambda$  parameters from both quantum statistics and strong FSI.
- \* STAR used this method to fit their K<sup>0</sup><sub>s</sub>K<sup>0</sup><sub>s</sub> correlation function from RHIC Au+Au collisions (Phys.Rev.C74:054902,2006).

Example of
Lednicky fit to data
with quadratic
baseline model
divided out

#### Big effect!

~30% reduction for R and ~50% for  $\lambda$ 

STAR saw a ~20% reduction in R and  $\lambda$  for Au+Au collisions.



## $R_{inv}$ and $\lambda$ from Lednicky fits to data for the 12 multiplicity- $k_T$ bins and for Quadratic vs. Gaussian fits to PYTHIA for the baseline statistical error bars



### Averaged $\lambda$ parameters vs. $k_T$ and multiplicity bin from Lednicky code fits

statistical + systematic error bars (including ±10% shift in baseline parameters)



 $\lambda$  shows a mostly flat  $k_T$  dependence and is at an overall level of  $\sim 0.5$ -0.6 similar to ALICE  $\pi\pi$  results

## Averaged $R_{inv}$ vs. $k_T$ , $m_T$ and multiplicity bin from Lednicky code fits compared with ALICE $\pi\pi$ correlation data statistical + systematic error bars (including ±10% shift in baseline parameters)



#### Summary for K<sub>s</sub>K<sub>s</sub> 7 TeV p+p analysis

- \* The present  $K_s^0K_s^0$  study is the first to show source parameters for p+p collisions and for different multiplicity and  $k_T$  bins.
- \* The  $K_s^0K_s^0$  results for the  $\lambda$  parameter show a mostly flat  $k_T$  dependence which is at an overall level of  $\sim 0.5$  0.6, similar to that seen in the ALICE  $\pi\pi$  results for 7 TeV p+p.
- \* The  ${\rm K^0_s K^0_s}$  results for  ${\rm R_{inv}}$  suggest a slight tendency for  ${\rm R_{inv}}$  to decrease with increasing  ${\rm k_T}$  and to increase for increasing event multiplicity bin as also seen in the ALICE  $\pi\pi$  results for 7 TeV p+p and in heavy-ion collisions.
- \* Comparing with  $\pi\pi$ , the  $K_s^0K_s^0$  results for  $R_{inv}$  extend the covered range of  $k_T$  to ~2 GeV/c (3 × larger than  $\pi\pi$ ). No discontinuity for the  $k_T$  dependence of  $R_{inv}$  is seen between  $\pi\pi$  and  $K_s^0K_s^0$ .

see L. Malinina poster on charged KK correlations in 7 TeV p+p, Tuesday Poster Session

### **Backup slides**

#### Details of the analysis: 7 TeV p+p $\rightarrow$ $K_s^0K_s^0$

#### K<sup>0</sup> Cuts:

- \*  $|\eta|$  < 0.8, 0.4 <  $p_T$  < 3.5 GeV/c
- \* Identification:  $K_s^0 \rightarrow \pi^+\pi^- (V_0 \rightarrow h^+h^-)$
- \* 0.490 < Reconstructed V<sub>0</sub> mass < 0.504 GeV/c<sup>2</sup>
- \* DCA of V<sub>0</sub> daughters < 0.1 cm



#### **Correlation function:**

- \*  $C(Q_{inv}) = R(Q_{inv})/B(Q_{inv})$ 
  - R → real pairs per event, B → pairs from 10 mixed events
- \* Form in 3 event multiplicity x 4  $k_{T}$  bins

#### Fits used to extract R and $\lambda$ from C(Q<sub>inv</sub>):

- \*  $C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^2\} \times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$
- \*  $C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\} \times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$
- \*  $C(Q_{inv})$  = N{ baseline } × { Lednicky code with  $a_0/f_0$  resonance decay } where the baseline parameters a and b are fixed by fits to **PYTHIA** with the Perugia-0 tune.

