${\rm K^0_s K^0_s}$ correlations in 7 TeV proton+proton collisions from the ALICE experiment at the LHC Tom Humanic Ohio State University **QM 2011**Monday, May 23, 2011 ## Motivation for studying K_sK_s correlations in ALICE - K_s^0 is a different kind of boson -> complements $\pi\pi$ and charged KK studies and extends k_T to higher values - K⁰_s is uncharged so no final-state Coulomb effects - previous K⁰_sK⁰_s studies suffered from a lack of statistics - -- in ALICE, high energy and long running periods allow better statistics ### Results from other experimental K_sK_s Bose-Einstein studies * e⁺e⁻ and e[±]p collisions (figure from Phys.Lett.B652:1-12,2007) * Au+Au collisions at $sqrt(s_{NN}) = 200 \text{ GeV} (RHIC)$ STAR $$K_s^0 K_s^0$$ R_{inv} = 4.09 ± 0.46 ± 0.31 fm , λ = 0.92 ± 0.23 ± 0.13 Phys. Rev. C74:054902 (2006) \rightarrow The present $K_s^0K_s^0$ study is the first to show source parameters for p+p collisions and for different multiplicity and k_T bins #### K_{s}^{0} identification (from $V_{0} \rightarrow h^{+}h^{-}$) Fit a Quadratic + Gaussian to the K⁰_s mass peak and take the Quadratic to represent the background Purity \rightarrow P = G/(Q+G), calculated in the range 0.49 < mass < 0.504 GeV #### Identity of the "mystery peak" in $K_s^0 K_s^0$ real distribution From PDG: $f_2'(1525)$ mass =1525 \pm 5 MeV/c² Γ = 73 \pm 6 MeV/c² Main decay mode $f_2'(1525) \rightarrow KK (89\%)$ Use PYTHIA with the Perugia-0 tune to model the baseline for K⁰_sK⁰_s C(Q_{inv}) as was done for ππ (apply ±10% syst. error) Quadratic fits to PYTHIA to extract baseline parameters for C(Q_{inv}) $$C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^{2}\}$$ $$\times F(Q_{inv})$$ where $F(Q_{inv})$ is the femtoscopic part containing, in general, quantum statistics and strong interaction effects which depend on R_{inv} and the λ parameter. ## Gaussian fits to PYTHIA to extract baseline parameters for C(Q_{inv}) $$C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\}$$ $$\times F(Q_{inv})$$ ## ALICE data 7 TeV p+p ## Gaussian fits to data C(Q_{inv}) with Quadratic PYTHIA baseline $$C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^{2}\}$$ $\times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^{2}]\}$ ## ALICE data 7 TeV p+p ## Gaussian fits to data C(Q_{inv}) with Gaussian PYTHIA baseline $$C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\}$$ $\times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$ #### Lednicky fit to data to take into account the a₀/f₀resonance #### in K⁰K⁰ channel - * A strong final-state interaction has an important effect on neutral kaon correlations due to the $f_0(980)$ and $a_0(980)$ resonances which contribute to the K^0K^0 -bar channel. - * Use the Lednicky & Lyuboshitz analytical model and code to take into account this strong FSI assuming s-wave scattering: (R. Lednicky and V.L. Lyuboshitz, Sov.J.Nucl.Phys. 35,770 (1982)) - * The code assumes a Gaussian distribution of the K^0 source points, and so one fits the model to the experimental correlation function to extract the Gaussian R and λ parameters from both quantum statistics and strong FSI. - * STAR used this method to fit their K⁰_sK⁰_s correlation function from RHIC Au+Au collisions (Phys.Rev.C74:054902,2006). Example of Lednicky fit to data with quadratic baseline model divided out #### Big effect! ~30% reduction for R and ~50% for λ STAR saw a ~20% reduction in R and λ for Au+Au collisions. ## R_{inv} and λ from Lednicky fits to data for the 12 multiplicity- k_T bins and for Quadratic vs. Gaussian fits to PYTHIA for the baseline statistical error bars ### Averaged λ parameters vs. k_T and multiplicity bin from Lednicky code fits statistical + systematic error bars (including ±10% shift in baseline parameters) λ shows a mostly flat k_T dependence and is at an overall level of ~ 0.5 -0.6 similar to ALICE $\pi\pi$ results ## Averaged R_{inv} vs. k_T , m_T and multiplicity bin from Lednicky code fits compared with ALICE $\pi\pi$ correlation data statistical + systematic error bars (including ±10% shift in baseline parameters) #### Summary for K_sK_s 7 TeV p+p analysis - * The present $K_s^0K_s^0$ study is the first to show source parameters for p+p collisions and for different multiplicity and k_T bins. - * The $K_s^0K_s^0$ results for the λ parameter show a mostly flat k_T dependence which is at an overall level of ~ 0.5 0.6, similar to that seen in the ALICE $\pi\pi$ results for 7 TeV p+p. - * The ${\rm K^0_s K^0_s}$ results for ${\rm R_{inv}}$ suggest a slight tendency for ${\rm R_{inv}}$ to decrease with increasing ${\rm k_T}$ and to increase for increasing event multiplicity bin as also seen in the ALICE $\pi\pi$ results for 7 TeV p+p and in heavy-ion collisions. - * Comparing with $\pi\pi$, the $K_s^0K_s^0$ results for R_{inv} extend the covered range of k_T to ~2 GeV/c (3 × larger than $\pi\pi$). No discontinuity for the k_T dependence of R_{inv} is seen between $\pi\pi$ and $K_s^0K_s^0$. see L. Malinina poster on charged KK correlations in 7 TeV p+p, Tuesday Poster Session ### **Backup slides** #### Details of the analysis: 7 TeV p+p \rightarrow $K_s^0K_s^0$ #### K⁰ Cuts: - * $|\eta|$ < 0.8, 0.4 < p_T < 3.5 GeV/c - * Identification: $K_s^0 \rightarrow \pi^+\pi^- (V_0 \rightarrow h^+h^-)$ - * 0.490 < Reconstructed V₀ mass < 0.504 GeV/c² - * DCA of V₀ daughters < 0.1 cm #### **Correlation function:** - * $C(Q_{inv}) = R(Q_{inv})/B(Q_{inv})$ - R → real pairs per event, B → pairs from 10 mixed events - * Form in 3 event multiplicity x 4 k_{T} bins #### Fits used to extract R and λ from C(Q_{inv}): - * $C(Q_{inv}) = N\{1 + aQ_{inv} + bQ_{inv}^2\} \times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$ - * $C(Q_{inv}) = N\{1 + a \exp[(bQ_{inv})^2]\} \times \{1 + \lambda \exp[-(Q_{inv}R_{inv})^2]\}$ - * $C(Q_{inv})$ = N{ baseline } × { Lednicky code with a_0/f_0 resonance decay } where the baseline parameters a and b are fixed by fits to **PYTHIA** with the Perugia-0 tune.