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Polarization and LPM Effects

LP(M) effect:. Landau+Pomeranchuk 1953

» destructive interference between radiation amplitudes because of
multiple scatterings of radiating high-energy charge

* characteristic quantity: formation length [ ; <«—» formation time ¢,
* loss of coherence when charge suffers multiple scatterings within ¢

=) suppression, quantitative change of soft radiation spectrum
compared to Bethe-Heitler spectrum

Polarization effect: Ter-Mikaelian 1954

« formation length modified by medium polarization (effects on radiated
quanta)

» loss of coherence, i.e. suppression of emission process, by dielectric
polarization of medium
investigations of the induced gluon radiation spectrum:

e Kampfer+Pavlenko 2000 constant thermal mass

@ Djordjevic+Gyulassy 2003 colour-dielectric modification of gluon
dispersion relation using HTL self-energy
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« classical calculation: w < E

* missing feature in Thoma+Gyulassy approach: Multiple scatterings
that change /(¢) (follow original work of Landau and Pomeranchuk)

« implement damping mechanisms as small corrections by complex
e(w) and p(w)
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- for constant ¥(t), A(t,t’) vanishes
- averaging over small deflection angles: (02) ~ ¢t/ E?



Result
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« medium-induced mechanical work depends on ¢ in the way known to
be important for decoherence; the linear dependence shows its
association with radiative energy loss

« expression resembles in vacuum exactly the negative of the radiation
intensity derived by Landau and Pomeranchuk

« essential difference in damping medium: Exponential damping
factor

- set y = 1in the following, i.e. concentrating on transerse modes only
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Radiation Dispersion Relation

» radiated quanta follow medium-modified dispersion relations of
plasma modes

« view emitted hard (w > 1") quanta as time-like excitations, which
obey finite thermal mass and which are damped within the absorptive
medium (Pisarski 1989+1993)

« Lorentzian ansatz for spectral function results in retarded propagator
(Peshier 2004+2005)

A Nw, k) =w? — K —m?+ 2@'®w
« Remark: m and I in general free parameters of spectral function

« concentration on transverse modes 4@ sensitivity of medium- _
induced mechanical work on poles in k-integration at w2e(w) —k2=0

« corresponding complex index of refraction follows via ¢ = 1 — 11 / w?
as
n*(w) =1—-m?/w* +2il'Jw

- dispersion relation of emitted quanta: Re € = k2/w2
- absence of radiation for w < m
- plasma modes are time-like
-Ime = QI‘/w has support in time-like sector too



Numerical Results
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=) - damping significantly reduces the spectrum
- with increasing E, relative effect of damping
compared to non-damping case increases



Formation Time — non-damping case
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« making use of the phase condition in
the non-damping case, estimate for
formation time taking multiple
scatterings into account
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Formation Time — non-damping case
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Formation Time — non-damping case

« multiple scatterings dominant for w; ~ ym <%—> <w < wg ~ VM%
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Formation Time — non-damping case
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Formation Time — damping case
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« competition with a second time scale, at which the exponential
damping factor becomes of order 1 /e : t4 ~ 1/T°

T ] -+ dampingirrelevant for 1/T' > ty(wr)
10-\ -
R 1T 7
........ e U
E T _ ]
1:— -

1 | |

0 5 10 15 20



Formation Time — damping case
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« competition with a second time scale, at which the exponential
damping factor becomes of order 1 /e : t4 ~ 1/T°

- damping irrelevant for 1 /I" > ¢ ¢ (w1 )

« damping plays some role in
intermediate region
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« damping becomes dominant for
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Conclusions

« consideration of the effect of damping of radiation on the
energy loss of an energetic charged probe

 followed original approach by Landau and Pomeranchuk
to implement multiple scatterings in the most simple way

» classical, not quantum

« radiated quanta are time-like excitations with finite
thermal mass being damped in the absorptive plasma

« find a potential substantial reduction of the radiative
energy loss per unit distance travelled by energetic
charge, which increases with damping and/or initial
energy

« formation time in non-damping medium already modified
due to polarization effects

* in damping-medium a second competing time scale
evolves that potentially negates the effect of multiple
scatterings in a specific w-region
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