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Strong Coupling QCD - Motivation and Setup

Why Strong Coupling QCD?

• SC-QCD exhibits confinement and chiral symmetry breaking.

• Nuclear physics: can derive nuclear interactions between hadrons from (lattice) QCD (see Ref. [1]).

• SC-QCD phase diagram: study nuclear phase transition, possible for arbitrarily large chemical potential:

the sign problem is mild (discrete time) or even absent (continuous time).

1-flavor QCD Lagrangian:
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• Send the gauge coupling to infinity: g →∞ ⇒ β = 2Nc

g2 → 0.

• Allows to integrate out the gauge fields completely! However, lattice remains coarse.

SC-QCD with staggered fermions:

• First integrate out gauge fields analytically, as the link integration factorizes, then integrate out fermions.

• Fermions become spinless.

• New degrees of freedom (exact rewriting of QCD path integral, once β is set to zero):

- Monomers correspond to mesons, M(x) = χ̄(x)χ(x),

- Dimers correspond to meson hoppings (non-oriented),

- Baryons form self-avoiding oriented loops, B(x) = 1
Nc
εi1...iNc

χi1(x) . . . χiNc
(x).

• Strong Coupling Partition Function after Grassmann integrals carried out (leading to the constraint):
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nx ∈ {0, 1, . . . , 3} kµ(x) ∈ {0, 1, . . . , 3} B̄(x)B(y) ∈ {0, 1}

Continuous Time Worm Algorithm

Motivation for Continuum Limit and Continous Time:

• Extent of Euclidean time: inverse temperature β = 1/T = Nτa, given by lattice extent Nτ and lattice

spacing a, can only be adjusted in discrete steps.

• Standard fix: introduce anisotropy parameter γ: aT ' γ2/Nτ .

• However: the function f (γ) = a
at

is not known, hence: mandatory to perform the continuum limit for

temporal lattice spacing: at→ 0: γ2→∞, Nτ →∞ at fixed aT .

• Continuum extrapolation turns out to be non-monotonic.

• Problems are bypassed by a continuous time formulation.

Basics of Worm Algorithm:

• Worm algorithm samples the monomer Green function G(x, y)

by violating the Grassmann constraint.

•Worm head and tail act as monomer sources.

• Updates proceed in three parts:

- MDP update (2 monomers ↔ 1 dimer, see Ref. [2])

- Mesonic Worm (move dimers around, see Ref. [3])

- Baryonic Worm (undirected ”polymers”↔ directed baryon

loops, change contour)
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Fig. 1: Typical monomer-dimer-baryon configuration.

Mesonic worm update: (T)ail and (H)ead positions in-

dicated, red dimer was removed in the previous step,

green dimer is added in the current step.

Continuous Euclidean Time Worm Algorithm:
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Fig. 2: Top: Transition probabilities in con-

tinuous Euclidean time, from [4]. Bottom:

identification of temporal dimer sequences

solid (green) and dahsed (blue) lines.

• Double and triple spatial dimers are suppressed with γ−2 and γ−4

⇒ multiple spatial dimers vanish in continuum limit.

• Temporal dimer sequences 3-0-3-0. . . (dashed lines) and 2-1-2-

1. . . (solid lines) become continuous intervals, separated by spatial

dimers.

• Rewrite Z in terms of temporal intervals (here: mesonic part only)
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∏
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with vL = 1/
√

6γ2, vT = 2/
√
γ2 and nL(x) and nT (x) the weights

and number of T-vertices and L-vertices, nI(x) the number of

intervals separated by spatial hoppings and ∆β̂i the interval length.

• In d spatial dimensions, solid intervals can emit spatial hoppings with

emission probability:

P (∆β̂) = exp(−dM∆β̂/4) ∆β̂ ∈ [0, β̂ = 1/aT ]

with dM the number of mesonic neighbors - for U(3) dM = 2d, but

it is site-dependent for SU(3) (no hoppings to baryon sites allowed).

Results on the SC-QCD Phase Diagram

U(3) results

• Theory is purely mesonic, continuous time extrapolation of the critical

temperature of the O(2) 2nd order transition is well described by fit

ansatz:

• Note that a and b have different sign (non-monotonic behaviour).

Tpc(Nτ) = Tc + a/Nτ + b/N 2
τ
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Fig. 4: Chiral susceptibility for U(1) (top) and U(3) bottom, obtained from finite size scaling (left) and continuum extrapolation (right),

compared to continuous time results.

SU(3) results

• In the continuum limit: baryon hoppings are suppressed with γ3 ⇒ baryons become static.

• Baryonic worm update simplifies in continuous time, positive (negative) oriented baryons are

(dis)favored by a factor exp(±3µ/T ) over dashed lines (mesons).

• Strong coupling QCD phase diagrams in the chiral limit:

- Chiral phase transition measured as a function of µ,

nuclear transition additionally measured with baryon density

- The location of the tricritical point agrees with previous findings.

- At T = 0, µBcrit < MB: strong nuclear interactions present (see Ref. [1]).

- Re-entrance seen (the entropy decreases in the high-density phase, due to saturation).
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Fig. 5: Left: mean field result, from [5]. Right: new result obtained with continuous time algorithm, with quark chem. potential µ/T

Fig. 6: Discrete algorithm with Nτ = 4, from [1]. Note that left and right plot differ in the functional dependence of the chem. potential on γ.

Conclusion & Outlook

• No need to perform continuum extrapolation

Nt → ∞. Results consistent with extrapolated

discrete results.

• Continuous time algorithm faster than discrete

algorithm forNt = 16 lattices at Tc.

• The continuum formulation has no sign problem.

• Continuous time correlation functions can be

measured and analytically continued.

• Extension to finite quark masses obtained by

generating monomers with probability density

exp(−2mq∆β̂).
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