

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Continuous Time Monte Carlo for Strong Coupling QCD Wolfgang Unger (ETHZ), Philippe de Forcrand (ETHZ, CERN)

Strong Coupling QCD - Motivation and Setup

Why Strong Coupling QCD?

- SC-QCD exhibits confinement and chiral symmetry breaking.
- Nuclear physics: can derive nuclear interactions between hadrons from (lattice) QCD (see Ref. [1]).
- SC-QCD phase diagram: study nuclear phase transition, possible for arbitrarily large chemical potential: the **sign problem** is **mild** (discrete time) or even absent (continuous time).

1-flavor QCD Lagrangian:

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(i \partial \!\!\!/ - g A_{\mu}^{a} \gamma^{\mu} t^{a} + m_{q} \right) \psi - \frac{\beta}{2N_{\text{c}}} \sum_{P} \left(\text{tr} U_{P} + \text{tr} U_{P}^{\dagger} \right) + \mathcal{O} \left(a^{2} \right)$$

- Send the gauge coupling to infinity: $g \to \infty \implies \beta = \frac{2N_c}{g^2} \to 0$.
- Allows to integrate out the gauge fields completely! However, lattice remains coarse.

SC-QCD with staggered fermions:

- First integrate out gauge fields analytically, as the link integration factorizes, then integrate out fermions.
- Fermions become spinless.
- New degrees of freedom (exact rewriting of QCD path integral, once β is set to zero):
 - Monomers correspond to mesons, $M(x) = \bar{\chi}(x)\chi(x)$,
 - **Dimers** correspond to meson hoppings (non-oriented),
 - **Baryons** form self-avoiding oriented loops, $B(x) = \frac{1}{N_c} \epsilon_{i_1...i_{N_c}} \chi_{i_1}(x) \ldots \chi_{i_{N_c}}(x)$.
- Strong Coupling Partition Function after Grassmann integrals carried out (leading to the constraint):

$$\mathcal{Z}(m_q, \gamma) = \sum_{\{k, n, l\}} \prod_{b = (x, \hat{\mu})} \frac{(3 - k_b)!}{3! k_b!} \gamma^{2k_b \delta_{\hat{0}\hat{\mu}}} \prod_{x} \frac{3!}{n_x!} (2am_q)^{n_x} \prod_{l} w(l), \qquad \sum_{\hat{\mu}} k_{\hat{\mu}} + n_x = 3$$

$$n_x \in \{0, 1, \dots, 3\} \qquad \qquad \bar{B}(x) B(y) \in \{0, 1\}$$

Continuous Time Worm Algorithm

Motivation for Continuum Limit and Continuus Time:

- Extent of Euclidean time: inverse temperature $\beta = 1/T = N_{\tau}a$, given by lattice extent N_{τ} and lattice spacing a, can only be adjusted in discrete steps.
- Standard fix: introduce anisotropy parameter γ :
- $aT \simeq \gamma^2/N_{\tau}$
- However: the function $f(\gamma) = \frac{a}{a_t}$ is not known, hence: mandatory to perform the continuum limit for temporal lattice spacing: $a_t \to 0$: $\gamma^2 \to \infty$, $N_\tau \to \infty$ at fixed aT.
- Continuum extrapolation turns out to be non-monotonic.
- Problems are bypassed by a **continuous time formulation**.

Basics of Worm Algorithm:

- Worm algorithm samples the monomer Green function G(x, y) by violating the Grassmann constraint.
- Worm head and tail act as monomer sources.
- Updates proceed in three parts:
 - MDP update (2 monomers \leftrightarrow 1 dimer, see Ref. [2])
- Mesonic Worm (move dimers around, see Ref. [3])
- Baryonic Worm (undirected "polymers" ↔ directed baryon loops, change contour)

Fig. 1: Typical monomer-dimer-baryon configuration.

Mesonic worm update: (T)ail and (H)ead positions indicated, red dimer was removed in the previous step, green dimer is added in the current step.

Continuous Euclidean Time Worm Algorithm:

Fig. 2: Top: Transition probabilities in continuous Euclidean time, from [4]. Bottom: identification of temporal dimer sequences solid (green) and dahsed (blue) lines.

• Double and triple spatial dimers are suppressed with γ^{-2} and γ^{-4} \Rightarrow multiple spatial dimers vanish in continuum limit.

- Temporal dimer sequences 3-0-3-0...(dashed lines) and 2-1-2-1...(solid lines) become continuous intervals, separated by spatial dimers.
- ullet Rewrite ${\mathcal Z}$ in terms of temporal intervals (here: mesonic part only)

$$\mathcal{Z}(T) = \prod_{x} v_L^{n_L(x)} v_T^{n_T(x)} \simeq \prod_{x} 3^{-n_I(x)/2} \prod_{i}^{n_I(x)} P(\Delta \hat{\beta}_i)$$

with $v_L = 1/\sqrt{6\gamma^2}$, $v_T = 2/\sqrt{\gamma^2}$ and $n_L(x)$ and $n_T(x)$ the weights and number of **T-vertices** and **L-vertices**, $n_I(x)$ the number of intervals separated by spatial hoppings and $\Delta \hat{\beta}_i$ the interval length.

• In d spatial dimensions, solid intervals can emit spatial hoppings with emission probability:

$$P(\Delta \hat{\beta}) = \exp(-d_M \Delta \hat{\beta}/4) \quad \Delta \hat{\beta} \in [0, \hat{\beta} = 1/aT]$$

with d_M the number of mesonic neighbors - for U(3) $d_M = 2d$, but it is site-dependent for SU(3) (no hoppings to baryon sites allowed).

Results on the SC-QCD Phase Diagram

U(3) results

• Theory is purely mesonic, continuous time extrapolation of the critical temperature of the O(2) 2nd order transition is well described by fit ansatz:

• Note that a and b have different sign (non-monotonic behaviour).

Fig. 4: Chiral susceptibility for U(1) (top) and U(3) bottom, obtained from finite size scaling (left) and continuum extrapolation (right), compared to continuous time results.

SU(3) results

- In the continuum limit: baryon hoppings are suppressed with $\gamma^3 \Rightarrow \mathbf{baryons} \mathbf{become} \mathbf{static}$.
- Baryonic worm update simplifies in continuous time, positive (negative) oriented baryons are (dis)favored by a factor $\exp(\pm 3\mu/T)$ over dashed lines (mesons).
- Strong coupling QCD phase diagrams in the chiral limit:
 - Chiral phase transition measured as a function of μ , nuclear transition additionally measured with baryon density
 - The location of the tricritical point agrees with previous findings.
 - At T = 0, $\mu_{\text{crit}}^B < M_B$: strong nuclear interactions present (see Ref. [1]).
 - Re-entrance seen (the entropy decreases in the high-density phase, due to saturation).

Fig. 5: Left: mean field result, from [5]. Right: new result obtained with continuous time algorithm, with quark chem. potential μ/T

Fig. 6: Discrete algorithm with $N_{\tau} = 4$, from [1]. Note that left and right plot differ in the functional dependence of the chem. potential on γ .

Conclusion & Outlook

- No need to perform continuum extrapolation $N_t \to \infty$. Results consistent with extrapolated discrete results.
- Continuous time algorithm faster than discrete algorithm for $N_t = 16$ lattices at T_c .
- The continuum formulation has no sign problem.
- Continuous time correlation functions can be measured and analytically continued.
- Extension to finite quark masses obtained by generating monomers with probability density $\exp(-2m_q\Delta\hat{\beta})$.

References

- [1] P. de Forcrand, M. Fromm. *Phys. Rev. Lett.* **103** (2010) 112005
- [2] F. Karsch, K. H. Mütter. *Nucl. Phys. B* **313** (1989) 541-559
- [3] D. H. Adams, S. Chandrasekharan. *Nucl. Phys. B* **662** (1989) 220-246
- [4] B. B. Beard, U. J. Wiese. *Phys. Rev. Lett.* **77** (1996) 5130-5133
- [5] Y. Nishida. *Phys. Rev. D* **69** (2004) 094501