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Results on the SC-QCD Phase Diagram

Strong Coupling QCD - Motivation and Setup

Why Strong Coupling QCD?
o SC-QCD exhibits confinement and chiral symmetry breaking.

U(3) results

e Theory is purely mesonic, continuous time extrapolation of the critical

e Nuclear physics: can derive nuclear interactions between hadrons from (lattice) QCD (see Ref. [1]). temperature of the O(2) 2nd order transition is well described by fit

o SC-QCD phase diagram: study nuclear phase transition, possible for arbitrarily large chemical potential: ansatz: Tye(Ny) =T, + a/N; + b/N;
the sign problem is mild (discrete time) or even absent (continuous time). e Note that a and b have different sign (non-monotonic behaviour).
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e New degrees of freedom (exact rewriting of QQCD path integral, once S is set to zero):

= x(z)x(z),
- Dimers correspond to meson hoppings (non-oriented),
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e Strong Coupling Partition Function after Grassmann integrals carried out (leading to the constraint):

Fig. 4: Chiral susceptibility for U(1) (top) and U(3) bottom, obtained from finite size scaling (left) and continuum extrapolation (right),

- Monomers correspond to mesons, M (x)
compared to continuous time results.

- Baryons form self-avoiding oriented loops, B(x) =

SU(3) results

e In the continuum limit: baryon hoppings are suppressed with v° = baryons become static.

e Baryonic worm update simplifies in continuous time, positive (negative) oriented baryons are
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e Strong coupling QCD phase diagrams in the chiral limit:

- Chiral phase transition measured as a function of pu,

n, € {0,1,...,3}

nuclear transition additionally measured with baryon density
- The location of the tricritical point agrees with previous findings.
- At T =0, P, < Mp: strong nuclear interactions present (see Ref. [1]).

Continuous Time Worm Algorithm

- Re-entrance seen (the entropy decreases in the high-density phase, due to saturation).
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Basics of Worm Algorithm: "
e Worm algorithm Samples the monomer Green tfunction G (CIZ’, y) Fig. 5: Left: mean field result, from [5]. Right: new result obtained with continuous time algorithm, with quark chem. potential p/T
by violating the Grassmann constraint. T B L R N — —
. e s Gy =0 i 1.5 —
e Worm head and tail act as monomer sources. T —— W 2nd org, i IS o 2y
" - DrdEr
. 01 -y
e Updates proceed in three parts: M N =0
- MDP update (2 monomers <> 1 dimer, see Ref. |2]) - 1F e 1ep _
, : : Fig. 1: Typical monomer-dimer-baryon configuration. o~ _ >—§—< N
- Mesonic Worm (move dimers around, see Ref. |3]) - (yy) # 0 ) £0 *
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dicated, red dimer was removed in the previous step, oclE S,
loops, change contour) o | ' %, -
green dimer 1s added in the current step.
Continuous Euclidean Time Worm Algorithm:
| e Double and triple spatial dimers are suppressed with =2 and ~~* O 01 02 03 04 05 I e  R—
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i —1 l| ¢ Temporal dimer SCQUELICES 5-0-3-0. .. (daShed hnes) and  2-1-2- Fig. 6: Discrete algorithm with Ny = 4, from [1]. Note that left and right plot differ in the functional dependence of the chem. potential on .
1...(solid lines) become continuous intervals, separated by spatial .
\ Conclusion & Outlook

dimers.

e Rewrite Z in terms of temporal intervals (here: mesonic part only) e No need to perform continuum extrapolation

N; — o00. Results consistent with extrapolated

e Continuous time correlation functions can be

Fiserote Tesults measured and analytically continued.

e [ixtension to finite quark masses obtained by

e Continuous time algorithm faster than discrete
algorithm for/NV; = 16 lattices at T..

e T'he continuum formulation has no sign problem.

cenerating monomers with probability density

with vy = 1/4/67%, vp = 2/+4/7? and nz(x) and ny(x) the weights exp(—2m,AB).

and number of T-vertices and L-vertices, nj(z) the number of
intervals separated by spatial hoppings and Ap3; the interval length.
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