The thermal model on the verge of the ultimate test: the LHC data

A. Andronic – GSI Darmstadt

- The thermal model for the light quark (u,d,s) hadrons
- Charmonium in the statistical hadronization model
- Summary and outlook

Thermal fits of hadron abundances

\[n_i = \frac{N_i}{V} = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T]} \pm 1 \]

quantum no. conservation:
\[\mu_i = \mu_b B_i + \mu_I I_3 I_i + \mu_S S_i + \mu_C C_i \]

Latest PDG hadron mass spectrum (up to 3 GeV, 485 species)

Minimize: \[\chi^2 = \sum_i \frac{(N_i^{exp} - N_i^{therm})^2}{\sigma_i^2} \]

\(N_i \): hadron yield \(\Rightarrow (T, \mu_b, V) \)

only STAR data: \(T=162 \text{ MeV}, \mu_b=24 \text{ MeV}, V=2400 \text{ fm}^3, \chi^2/N_{df}=17.5/15 \)

Hadron abundances are in agreement with a thermally equilibrated system
Energy dependence of T, μ_b (central collisions)

thermal fits exhibit a limiting temperature:

$$ T = T_{\text{lim}} \frac{1}{1 + \exp(2.60 - \ln(\sqrt{s_{NN}} \text{ (GeV)})/0.45)}, $$

$$ \mu_b [\text{MeV}] = \frac{1303}{1 + 0.286 \sqrt{s_{NN}} \text{ (GeV)}} $$

PLB 673 (2009) 142
Volume in central collisions

\[V_{\text{chem}}(\Delta y = 1) = \frac{dN_{\text{ch}}}{dy}|_{y=0}/n_{\text{therm}} \]

\[V_{\text{HBT}} = (2\pi)^{3/2} R_{\text{side}}^2 R_{\text{long}} \ldots \text{data from ALICE, PLB 696, 328 (2011)} \]
“Birds-eye” view of some ratios

good agreement data-model ...but not free of some “tensions”

\(p, \bar{p} \) data of STAR ad-hoc “corrected” by -25% for feed-down

A.Andronic@GSI.de
...and the state of other “horns”

(Hyper-)nuclei predictions

RHIC ($\sqrt{s_{NN}}=200$ GeV):
$T=164$ MeV, $\mu_b = 24 \pm 2$ MeV

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Exp. (STAR)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^3\text{He}/^3\text{He}$</td>
<td>$0.45\pm0.02\pm0.04$</td>
<td>0.42 ± 0.03</td>
</tr>
<tr>
<td>$^3\Lambda^\Lambda/^3\Lambda$</td>
<td>$0.49\pm0.18\pm0.07$</td>
<td>0.45 ± 0.03</td>
</tr>
<tr>
<td>$^3\Lambda/^3\Lambda H$</td>
<td>$0.82\pm0.16\pm0.12$</td>
<td>0.35 ± 0.003</td>
</tr>
<tr>
<td>$^3\Lambda H/^3\Lambda He$</td>
<td>$0.89\pm0.28\pm0.13$</td>
<td>0.37 ± 0.003</td>
</tr>
</tbody>
</table>

...discrepancy for $^3\Lambda H/^3\Lambda He$?

could be resolved if an excited state of $^3\Lambda H$ exists

is chemical freeze-out a determination of the phase boundary? if yes, how is thermalization achieved?

- for SPS energies and higher: driven by the deconfinement transition
 PBM, Stachel, Wetterich, PLB 596 (2004) 61

- for lower energies (SIS100): is the quarkyonic phase transition the “thermalizer”?
 McLerran, Pisarski, NPA 796 (2007) 83
 AA et al., NPA 837 (2010) 65
The phase diagram of QCD

what will we find at LHC?

relevance for LQCD

\((\mu_s = \mu_{I^3} = 0) \)

O. Kaczmarek et al., PRD 83, 014504 (2011)

does freeze-out curve follow the chiral phase transition or crossover line at \(\mu_b \neq 0 \)?

J. Cleymans, K. Redlich PRL 81, 5284 (1998)

...and here are the predictions

\[\text{Yield ratio} \]

\[\begin{align*}
\pi^+ \pi^- & \quad 10^0 \\
K^+ K^- & \quad 10^{-1} \\
p \bar{p} & \quad 10^{-2} \\
\Lambda \bar{\Lambda} & \quad 10^{-3} \\
K^* & \quad 10^{-4} \\
\phi & \quad 10^{-5} \\
\Delta^{++} & \quad 10^{-6} \\
\Xi^- \Xi^+ & \quad 10^{-7} \\
\Sigma^* & \quad 10^{-8} \\
\Lambda^* & \quad 10^{-9}
\end{align*} \]

Pb-Pb, \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \)

RHIC: \(T = 164 \text{ MeV}, \mu_b = 24 \text{ MeV} \)
LHC: \(T = 164 \text{ MeV}, \mu_b = 1 \text{ MeV} \)

\(^4\mathrm{He} \) discovery: STAR, Nature 473, 353 (2011)

A.Andronic@GSI.de
Statistical hadronization of heavy quarks: assumptions

- all charm quarks are produced in primary hard collisions \(t_{cc} \sim 1/2m_c \simeq 0.1 \text{ fm/c} \)
- survive and thermalize in QGP (thermal, but not chemical equilibrium)
- charmed hadrons are formed at chemical freeze-out together with all hadrons

statistical laws, quantum no. conservation; stat. hadronization \(\neq \) coalescence

is freeze-out at(/the?) phase boundary?
...we believe yes ...based on data in the light-quark sector (support from LQCD?)

- no \(J/\psi \) survival in QGP (full screening)

\(\text{can } J/\psi \text{ survive above } T_c \)? ...not settled yet (LQCD)

if all this supported by data, \(J/\psi \) looses status as “thermometer” of QGP
...and gains status as a powerful observable for the phase boundary
Statistical hadronization of charm: method and inputs

- Thermal model calculation (grand canonical) $T, \mu_B: \rightarrow n_X^{th}$

- $N^{dir}_{cc} = \frac{1}{2} g_c V (\sum_i n_D^{th} + n_{\Lambda}^{th}) + g_c^2 V (\sum_i n_{\psi}^{th} + n_{\chi}^{th})$

- $N_{cc} \ll 1 \rightarrow \textbf{Canonical}$ (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

 $$N^{dir}_{cc} = \frac{1}{2} g_c N_{oc}^{th} I_1(g_c N_{oc}^{th}) + g_c^2 N_{cc}^{th} \rightarrow g_c \text{ (charm fugacity)}$$

Outcome:

$$N_D = g_c V n_D^{th} I_1/I_0 \quad N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$$

Inputs: $T, \mu_B, \quad V_{\Delta y=1} = (dN_{ch}^{exp}/dy)/n_{ch}^{th}, \quad N^{dir}_{cc}$ (pQCD or exp.)

Minimal volume for QGP: $V_{QGP}^{min}=400 \text{ fm}^3$
The “null hypothesis”

charmonium in pp(A) collisions

...is far from thermalized (model is for AA)

...while a thermal value is reached in central PbPb (NA50, SPS)
The “null hypothesis” for bottomonium

Relative cross section

Statistical model

...is far from thermalized (model is for AA)

...will we find a thermal value at LHC?

A.Andronic@GSI.de
J/ψ production: the ultimate test at the LHC

i) less generation (more suppr.) at forward rapidity; ii) less suppression at LHC
“generic” predictions validated by data (despite uncertainty of $\sigma_{c\bar{c}}$ input)
Summary and outlook

- The thermal model quite successful for light-quark hadrons (central collisions) despite imperfect fits at SPS and RHIC (and more data at low energies needed)

- It works also for heavy quarks (...produced exclusively in hard collisions, survive and thermalize in QGP)

 Good agreement with J/ψ (and ψ') data at SPS and RHIC (...with a smallish $\sigma_{c\bar{c}}$ tough)

 Main uncertainty is charm cross section ... experiments will provide more precise measurements, in particular in AA (shadowing)

 The thermal model ready to be confronted with the LHC data

 ...while compatibility to (new) RHIC data is further scrutinized
Backup slides
Additions (compared to 2005):
Many new resonances up to 3 GeV
+(86)4 (non)strange mesons
+(36)30 (non)strange baryons

\(\sigma \) meson \((f_0(600))\):
\[m_\sigma = 484 \pm 17 \text{ MeV}, \Gamma_\sigma = 510 \pm 20 \text{ MeV} \]

(in total 485 hadron species, incl. composites)

PLB 673 (2009) 142
much better explained by the model
...as due to detailed features of the hadron mass spectrum
...which leads to a limiting temperature ("Hagedorn", $T < T_H$)
...and contains the QCD phase transition
the horn’s sensitivity to the phase boundary is determined (via strangeness neutrality condition) by the Λ abundance (determined by both T and μ_b)

PLB 673 (2009) 142
J/ψ: "core" and "corona"

realistic nuclei: "core" (QGP, apply stat. hadr.) and "corona" (NN coll.)

\[N_{\text{core}}^{J/\psi} = g_c^2 n_{th}^J V_{\text{core}} \]

\[g_c \sim N_{\text{dir}}^{cc} = N_{\text{coll}}^{\text{core}} \sigma_{pp}^J / \sigma_{\text{inel}}^{pp} \]

\[N_{\text{corona}}^{J/\psi} = N_{\text{coll}}^{\text{corona}} \sigma_{J/\psi}^{pp} / \sigma_{\text{inel}}^{pp} \]

\[\Rightarrow N_{J/\psi} = N_{J/\psi}^{\text{core}} + N_{J/\psi}^{\text{corona}} \]
Timescales for charm(onium) production

- QGP formation time, t_{QGP}
 - SPS (FAIR): $t_{QGP} \approx 1$ fm/c $\sim t_{J/\psi}$
 - RHIC, LHC: $t_{QGP} \lesssim 0.1$ fm/c $\sim t_{c\bar{c}}$

 survival of initially-produced J/ψ at SPS/FAIR energies? ($T_d \sim T_c$)

- collision time, $t_{coll} = 2R/\gamma_{cm}$
 - SPS (FAIR): $t_{coll} \gtrsim t_{J/\psi}$
 - RHIC: $t_{coll} < t_{J/\psi}$, LHC: $t_{coll} << t_{J/\psi}$

 cold nuclear suppression (breakup by initial nucleons) important at SPS/FAIR energies but not at RHIC and LHC

shadowing is yet another (cold nuclear) effect - important at LHC (RHIC?)

NB: the only way to distinguish: measure $\sigma_{c\bar{c}}$ in pA and AA

A.Andronic@GSI.de
\(J/\psi \) at RHIC: rapidity dependence, \(R_{AA} \)

The model reproduces data (PHENIX, nucl-ex/0611020) very well (pQCD \(\sigma_{c\bar{c}} \))

Direct indication of \(J/\psi \) generation at hadronization (enhanced at \(y=0 \))

(constant \(R_{AA} \) expected within Debye screening model)

J/ψ at RHIC: effect of shadowing

Au+Au 0-20% ($N_{\text{part}}=280$)

- σ_{cc}: pQCD FONLL
- σ_{cc}: PHENIX + shadowing (dAu)

Au+Au 20-40% ($N_{\text{part}}=140$)

The model describes data with PHENIX σ_{cc} (lower error plotted)

A. Andronic@GSI.de
J/ψ production relative to charm

- the most "solid" observable
 - with similar features as R_{AA}
- similar values at RHIC and SPS
 - with differences in fine details
 - determined by canonical suppression of open charm
- enhancement-like at LHC
 - can. suppr. lifted, quadratic term dominant

$100 \times \frac{dN_{J/\psi}}{dy} / \frac{dN_{cc}}{dy}$ vs N_{part}

- LHC ($d\sigma_{cc}/dy=639 \ \mu b$)
- RHIC ($d\sigma_{cc}/dy=63.1 \ \mu b$)
- SPS ($d\sigma_{cc}/dy=5.7 \ \mu b$)
solid expectations for LHC

...providing we know well (from measurements) the charm production cross section in Pb-Pb agreement that (re)generation is the game at LHC?

Liu, Qu, Xu, Zhuang, arXiv:0907.2723

Song, Park, Lee, arXiv:1002.1884

“2-component” (kinetic, coalescence) models

...as Grandchamp, Rapp, PLB 523 (2001) 60, NPA 709 (2002) 415