Quarkonia Measurements by the CMS Experiment in pp and PbPb Collisions

Catherine Silvestre Tello Catherine Silvestre Tello UICC University of Illinois Catherine Silvestre Tello UICC University of Illinois Catherine Silvestre Tello

for the CMS Collaboration

Quark Matter 2011, Annecy, May 23-29 2011

Quarkonia in Heavy Ion Collisions

- Good candidates to probe the QGP in HIC
 - Large masses and (dominantly) produced at the early stage of the collision via hard-scattering of gluons
 - Strongly bound resonances

The start : quarkonia should melt in the QGP T. Matsui & H. Satz PLB178, 416 (1986) Color Screening

A Complex Production

Production mechanism not completely understood

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs ! If NNLO* \approx NLO, problem with polarization

Many effects altering production in nuclear reactions

- In pA, cold nuclear matter (CNM) effects
 - Extensively studied at the SPS and RHIC
 - But different at the LHC ?
- In AA, hot medium effects

RHIC J/ ψ Suppression Puzzles

- No increase of the suppression with local density R_{AA} (|y|<0.35) > R_{AA} (1.2<|y|<2.2)
- Similar suppression at SPS and RHIC energies $P_{\text{NA50, Scomparin's talk at QM06, 0 < y < 1}}$

Compact Muon Solenoid

catherine.silvestre@cern.ch (LPSC)

Quarkonia in CMS

- Precision quarkonia physics
 - High statistics run pp \sqrt{s} =7 TeV L_{int}=40 pb⁻¹

Nuclear modification factor

− PbPb
$$\sqrt{s_{NN}}$$
=2.76 TeV L_{int}=7.28 μ b⁻¹

- pp \sqrt{s} =2.76 TeV L_{int}=225 nb⁻¹
 - Similar hard probes statistics
 - Good reference
 - Same reconstruction algorithm

catherine.silvestre@cern.ch (LPSC)

Di-muons from CMS pp √s=7 TeV

Inclusive J/ψ pp √s=7 TeV

$B \rightarrow J/\psi$

pp √s=7 TeV

- Simultaneous fit
 - Invariant mass

J/ψ

 L_{xy}

°⊖3500 — CMS √s = 7 TeV → data ⊕3000 — signal+

8₂₅₀₀

)/2000 Events/

1000

500

2.6

Pseudo-proper decay length

В

2.9

3

signal+background

background-only

 $\sigma = 48 \text{ MeV/c}^2$

2.7 2.8

J/ψ Cross Section pp √s=7 TeV

PROMPT

NON PROMPT

- **Prompt J**/ ψ production not well reproduced
- Models describe non-prompt J/ ψ production better

Y States

pp √s=7 TeV

- Very good dimuon mass resolution \rightarrow separation of the 3 Υ states

Y Cross Section pp √s=7 TeV

Quarkonia in pp

- Summary of the 7 TeV run
 - Differential charmonia and bottomonia
 - Constrain production mechanisms
 - In progress
 - $\chi_{c},\,\psi^{'},\,quarkonium$ polarization

• Heavy ion reference run $\sqrt{s}=2.76$ TeV

catherine.silvestre@cern.ch (LPSC)

PbPb COLLISIONS

catherine.silvestre@cern.ch (LPSC)

Di-muons by CMS in PbPb

catherine.silvestre@cern.ch (LPSC)

Inclusive J/ψ

Similar resolution as in pp

catherine.silvestre@cern.ch (LPSC)

PbPb

6

TeV

First Non-Prompt J/ψ

CMS

catherine.silvestre@cern.ch (LPSC)

Quarkonia CMS - Quark Matter 2011

PbPb

Corrections

PbPb √s_{NN}=2.76 TeV

catherine.silvestre@cern.ch (LPSC)

$J/\psi R_{AA}$ vs. p_T : Comparison

High $p_T J/\psi$'s tendency to survive at RHIC (and SPS) is not seen at the LHC

Prompt J/ ψ R_{AA} vs. y PbPb

- Less suppression at forward rapidity for high p_T
- Anti-shadowing ?
 - CMS@p_T=10 up to $x_1 \sim 0.02 (x_2 \sim 5.10^{-4})$

$J/\psi R_{AA}$ vs. y : Comparison

- CMS : opposite trend than PHENIX but different p_T
- Increasing R_{AA} going towards ALICE y range
 - Watch out for anti-shadowing :
- CMS@p_T=10 GeV/c up to $x_1 \sim 0.02 (x_2 \sim 5.10^{-4})$ ALICE@p_T=0 GeV/c up to $x_1 \sim 0.06 (x_2 \sim 2.10^{-5})$

Central 0-10% $R_{AA} = 0.20 \pm 0.03 \pm 0.01$ Peripheral 50-100% $R_{AA} = 0.59 \pm 0.12 \pm 0.10$

$J/\psi R_{AA}$ vs. N_{part} Comparison

STAR \sqrt{s} =200 GeV, J/ ψ 5 < p_T < 8 GeV/c Stronger suppression seen in CMS than at STAR

(PARENTHESIS FROM QUARKONIA : b-QUARK ENERGY LOSS)

catherine.silvestre@cern.ch (LPSC)

Minimum bias $R_{AA} = 0.37 \pm 0.07 \pm 0.03$ Central 0-20% $R_{AA} = 0.36 \pm 0.08 \pm 0.03$

High p_T Suppression PbPb

Same level of suppression as hadrons

catherine.silvestre@cern.ch (LPSC)

Quarkonia CMS - Quark Matter 2011

2.76 TeV

BACK TO QUARKONIA : BOTTOMONIA

catherine.silvestre@cern.ch (LPSC)

Y States

PbPb

catherine.silvestre@cern.ch (LPSC)

$\Upsilon(1S) R_{AA}$

PbPb

- Minimum bias $R_{AA} = 0.62 \pm 0.11 \pm 0.10$
- High p_T not as suppressed ?
 - Need more statistics

$\Upsilon(1S) R_{AA}$

- **Comparison with STAR**
 - CMS Y(1S) $R_{AA}(0-100) = 0.62 \pm 0.11 \pm 0.10$
 - R. Reed - STAR Υ (1+2+3S) R_{AA}(0-60) = 0.56 ± 0.11 +0.02 -0.10 (poster)

Y(2S+3S) Suppression **PbPb**

- $\Upsilon(2S+3S)$ production relative to $\Upsilon(1S)$ in pp and PbPb
- Compare pp and PbPb through a simultaneous fit

Υ(2S+3S) Suppression PbPb

(0.14 GeV/c²

Events /

$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)\big|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)\big|_{pp}}$$

- Pros of a double ratio
 - Acceptance cancels
 - Efficiency cancels

Potential differences

 Remaining systematics 9%, from line shapes

 $\frac{\Upsilon(2S+3S)/\Upsilon(1S)\Big|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)\Big|_{pp}} = 0.31^{+0.19}_{-0.15} \pm 0.03$

arXiv : <u>1105.4894</u> Submitted to PRL

Hypothesis: no suppression \Rightarrow p-value 1% Significance of the suppression 2.4 σ

catherine.silvestre@cern.ch (LPSC)

Υ Suppression

- Large fraction of $\Upsilon(1S)$ come from excited states
 - Feed down ~50% from χ_b for $p_T(\Upsilon)$ >8 GeV/c

CDF: PRL84 (2000) 2094

PbPb

<mark>6 TeV</mark>

- 40% suppression of Y(1S)
- Relative suppression of Y(2S+3S) vs. Y(1S)
 - Observation consistent with melting of the excited states only ?

- What about cold nuclear matter effects ?
 - Smaller σ_{abs} than at lower energy and for J/ ψ (smaller size)

R. Vogt, hep-ph/1003.3497

- Shadowing cancelling in the $\Upsilon(2S+3S)/\Upsilon(1S)$ ratio
 - pA run ?

Quarkonia Production with CMS

Sequential melting accessible with CMS resolution

catherine.silvestre@cern.ch (LPSC)

$\Upsilon \rightarrow e^+e^- @ RHIC$

- PHENIX
- **Au+Au collisions**
- High mass correlated \bullet di-electrons are suppressed

- **STAR** lacksquare
 - Au+Au collisions 0-60%
 - 93 Υ(1,2,3S)

Pseudo-proper decay length

catherine.silvestre@cern.ch (LPSC)

Quarkonia Acceptance

catherine.silvestre@cern.ch (LPSC)

$B \to J/\psi$ Fraction in PbPb and pp

B \rightarrow J/ ψ Fraction pp $\sqrt{s=7}$ TeV

$R_{AA} J/\psi$ vs. p_T Predictions

- Range of predictions
 - Less suppression
 - Zhao, Rapp: Due to finite J/ψ formation time, B feed down and Cronin effect
 - Stronger suppression
 - « Hot wind » model cc pair in motion w.r.t. hot ≃ medium ⇒ decrease of screening length.

pp Comparison

Same pp reconstruction, including low $p_T J/\psi$ Agreement of the Y(2S+3S)/Y(1S) ratio

• pp 2.76 TeV

catherine.silvestre@cern.ch (LPSC)

p-value

Could background fluctuation produce a result as extreme as observed in data?

- Generate pseudo-experiments following the *null-hypothesis* (i.e. no suppression)
- Fit pseudo-data samples with nominal fit
- Count fraction of occurrences for which the ratio (taken as test statistic) is same or lower than observed:
 - p-value: 0.9%
 - 2.4 σ (1-sided Gaussian test)

J/ψ R_{AA} Comparison PbPb

- **PHENIX** \sqrt{s} =200 GeV, inclusive J/ ψ , p_T^{J/ ψ}<5 GeV/c
- SPS, PHENIX, LHC: similar centrality dependence
 - But different p_T , systems and energies

