Elliptic and triangular flow of identified particles measured with the ALICE detector.

Mikołaj Krzewicki for the ALICE collaboration.
Motivation

- Integrated flow larger by 30% than at RHIC.
- Differential flow of charged particles almost same.
- Is this expected in hydrodynamic models?
- Does quark scaling work at the LHC?
- Is triangular flow similar to elliptic flow?
 - Low p_t mass scaling?
 - Quark scaling?
Analysis outline

• Data sample:
 • ~4M Pb-Pb events at $\sqrt{s}=2.76\text{TeV}$,
 • minimum bias trigger,
 • acceptance: $-0.8<\eta<0.8$.

• Detectors used:
 • time-of-flight (particle identification),
 • time projection chamber (tracking & particle id.),
 • inner tracking system (tracking).

• Sources of systematic uncertainty considered:
 • non-flow,
 • feed-down,
 • centrality determination.
Particle identification

- Particle identification tuned for purity>95%:
 - π and K: $p<3\text{GeV}/c$,
 - proton: $p<5\text{GeV}/c$.
- PID cuts:
 - asymmetric cut on beta in the time-of-flight detector.
 - Additional 2σ cut on dE/dx in the time projection chamber to clean the data.
Elliptic flow of identified particles

- Centrality dependence of v_2 for pions, kaons and antiprotons.
- Method: scalar product with $|\Delta \eta| > 1$ to reduce non-flow correlations.
Elliptic flow of identified particles

- Centrality dependence of v_2 for pions, kaons and antiprotons.
- Method: scalar product with $|Δ\eta|>1$ to reduce non-flow correlations.
Viscous hydro & data

- Hydrodynamic models predict magnitude and mass splitting for Pb-Pb events @LHC.
Viscous hydro & data

- Hydrodynamic models predict magnitude and mass splitting for Pb-Pb events @LHC.
- Data and prediction disagree for protons in more central events.
Viscous hydro & data

- Hydrodynamic models predict magnitude and mass splitting for Pb-Pb events @LHC.
- Data and prediction disagree for protons in more central events.
- Hydro prediction better for peripheral events at low p_t.
From RHIC to LHC

- Hydrodynamic models predict a larger mass splitting at low p_t, mostly due to shift in proton flow.
Hydrodynamic models predict a larger mass splitting at low p_t, mostly due to shift in proton flow.

Flow of anti-protons at LHC shows a shift similar to prediction.

- Larger mass splitting.
LHC flow rescaled

Elliptic flow per quark vs transverse kinetic energy per quark (KE_t scaling).

Hydro prediction shows compression;
 - At low p_t better agreement between π and K.

Quark Matter Annecy, 23.05.2011
M.Krzewicki, ALICE, PID flow
- Elliptic flow per quark vs transverse kinetic energy per quark (K_{E_t} scaling).

- Hydro prediction shows compression;
 - At low p_t better agreement between π and K.

- Data shows agreement between π and K, anti-protons do not follow the scaling.
Triangular flow

- In the Glauber picture triangularity due to fluctuations of initial state.
- Magnitude of (final state) v_3 sensitive to η/s.
- How large is the triangular flow (v_3)?
- Does it show hydro-like features like v_2?
- v_3 in two centrality bins, two-particle method, no eta gap.
- Low pt mass scaling as expected from the hydro picture.
- v_3 of pions and protons cross at intermediate p_t as expected from coalescence.
- Magnitude suggests $\eta/s < 0.16$.

Triangular flow

![Graph 1](image1.png)

![Graph 2](image2.png)
Triangular flow rescaled

- v_3 per quark vs transverse kinetic energy per quark.
- mid-central: at low p_t no scaling.
- mid-peripheral: scaling different than for v_2.
Summary

• We have shown the elliptic flow of identified particles at LHC:
 • Hydrodynamics describes peripheral events quite well.
 • In more central events hydro and data disagree.
 • Results consistent with larger mass splitting compared to RHIC.
 • K_{E_t} scaling for v_2 seems worse than at RHIC.

• Triangular flow of identified particles at LHC:
 • Mass scaling as expected based on hydro.
 • Crossing point as expected based on coalescence.
 • Indication of $\eta/s<0.16$.
 • K_{E_t} scaling qualitatively differs from scaling of v_2.
merci