Quarkonium production at the LHC: QCD corrections and new observables

J.P. Lansberg
IPN Orsay – Paris-Sud 11

Quark Matter 2011
XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
May 23-28 2011
Annecy, France
The CSM predictions account correctly for the yield

Difficulties in describing mid- and high-P_T data?

Colour Octet Dominance is challenged at low/mid P_T in pp

QCD corrections and polarisation

New Observables:

$Q + Q$

$Q + \gamma$
Part I

Context
the CSM predictions account for the yield

→ The yield vs. \sqrt{s}

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})
The CSM predictions account for the yield

- The yield vs. \sqrt{s}
 - Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
 - Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})
The CSM predictions account correctly for the yield $(\frac{d\sigma}{dy})$

\rightarrow RHIC ($\sqrt{s} = 200$ GeV)

ϕ direct = 59 ± 10 %

PHENIX (PRL 09 232002)
PHENIX (2009; Prelim.)

NLO + NLO
LO

CMS
Prelim. ALICE
Prelim. ATLAS
Prelim. LHC-b

Quarkonium production at the LHC
The CSM predictions account correctly for the yield (\(\frac{d\sigma}{dy}\))

\[\rightarrow \text{RHIC (}\sqrt{s} = 200\ \text{GeV})\]

\[\rightarrow \text{LHC (}\sqrt{s} = 7\ \text{TeV})\]
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T
Difficulties in describing mid- and high-\(P_T\) data?

Impact of QCD corrections to CSM at mid and high \(P_T\)

\[
d\sigma/dP_T \mid_{|y|<0.4} \times Br \quad (pb/GeV)
\]

\[
\begin{array}{cccccccc}
0 & 1 & 10 & 100 & 0.001 & 0.1 & 1 & 10 \\
0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{LO} & \text{NLO} & \text{NNLO}\star \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{CDF data} & 1 \times 10^{-6} & 1 \times 10^{-5} & 0.0001 & 0.001 & 0.01 & 0.1 & 1 & 10 \\
\end{array}
\]

\[
\begin{array}{cccc}
d\sigma/dP_T \mid_{|y|<0.6} \times Br \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{LO} & \text{NLO} & \text{NNLO}\star \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{CDF data} & 1 \times 10^{-6} & 1 \times 10^{-5} & 0.0001 & 0.001 & 0.01 & 0.1 & 1 & 10 \\
\end{array}
\]

The NNLO\star is not a complete NNLO\rightarrow possibility of (large) uncanceled logs!

Two possibilities?

\[\downarrow \quad \downarrow\]

\[\text{NNLO} \approx \text{NLO} \quad \text{NNLO} \approx \text{NNLO}\star\]

\[\downarrow \quad \downarrow\]

\[\text{CO contributions likely significant} \quad \text{CS alone is enough}\]

\[\downarrow \quad \downarrow\]

\[\text{Issues with polarization unless} \quad \text{Ok with polarization}\]

\[\downarrow \quad \downarrow\]

\[e^+e^-\text{constraints on} \quad 1S [8]\]

\[\leftrightarrow \quad \text{NNLO Collinear fact.} ?\]
Difficulties in describing mid- and high-\(P_T\) data?

Impact of QCD corrections to CSM at mid and high \(P_T\)

The NNLO* is not a complete NNLO → possibility of (large) uncanceled logs!

Two possibilities?

↓ ↓

\(\text{NNLO} \approx \text{NLO} \quad \text{NNLO} \approx \text{NNLO*}\)

CO contributions likely significant

CS alone is enough

↓ ↓

\(\leftrightarrow\) NNLO Collinear fact.?
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs!
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs!

Two possibilities?

NNLO \simeq NLO

NNLO \simeq NNLO*
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs!

Two possibilities?

$\text{NNLO} \simeq \text{NLO}$

$\text{NNLO} \simeq \text{NNLO}^*$
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T

The NNLO* is not a complete NNLO → possibility of (large) uncanceled logs!

Two possibilities?

NNLO \approx NLO

CO contributions likely significant

NNLO \approx NNLO*

CS alone is enough
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T.

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs!

Two possibilities?

- **NNLO \simeq NLO**
 - CO contributions likely significant

- **NNLO \simeq NNLO**
 - CS alone is enough
Difficulties in describing mid- and high-P_T data?

Impact of QCD corrections to CSM at mid and high P_T.

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs!

Two possibilities?

NNLO \simeq NLO

CO contributions likely significant

Issues with polarisation unless $3S_1^{[8]}$ small

NNLO \simeq NNLO*

CS alone is enough

Ok with polarisation
Difficulties in describing mid- and high-\(P_T \) data?

Impact of QCD corrections to CSM at mid and high \(P_T \)

The NNLO* is not a complete NNLO → possibility of (large) uncanceled logs!

Two possibilities?

- NNLO \(\simeq \) NLO
 - CO contributions likely significant
 - Issues with polarisation unless \(3S_1^{[8]} \) small

- NNLO \(\simeq \) NNLO*
 - CS alone is enough
 - Ok with polarisation
Difficulties in describing mid- and high-\(P_T\) data?

Impact of QCD corrections to CSM at mid and high \(P_T\)

The NNLO\(^*\) is not a complete NNLO \(\rightarrow\) possibility of (large) uncanceled logs!

Two possibilities?

\[\begin{align*}
\text{NNLO} & \approx \text{NLO} \\
\downarrow & \\
\text{CO contributions likely significant} & \\
\downarrow & \\
\text{Issues with polarization unless } ^3S_1^{[8]} \text{ small} & \\
\downarrow & \\
e^+e^- \text{ constraints on } ^1S_0^{[8]} & \text{ and } ^3P_J^{[8]} \\
\downarrow & \\
k_T \text{ fact.} & \leftrightarrow \text{NNLO Collinear fact. ?}
\end{align*}\]

J.P. Lansberg (IPNO) Quarkonium production at the LHC May 24, 2011 6 / 17
Models vs. LHCb data for the J/ψ (Courtesy of J.He & P. Robbe)
Models vs. LHCb data for the Υ (borrowed from G. Manca, April’11)

Models vs. ATLAS data for the J/ψ (borrowed from D. Price, April’11)

Difficulties in describing mid- and high-P_T data?
the Colour Octet Dominance challenged at low/mid P_T in pp?

- No need of CO contributions at low P_T
the Colour Octet Dominance challenged at low/mid P_T in pp?

- No need of CO contributions at low P_T
- Strong constraints from the e^+e^- analyses
the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{non \, c\bar{c}}^{>2ch.\, tr.} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{non\; c\bar{c}}^{2ch.tr.} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

 no space for CO (1S_0 or 3P_J) in B-factory data

the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{non \text{ c\bar{c}}}$ $= 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg$ at NLO + rel. corr. : 0.4-0.7 pb
 - no space for CO (1S_0 or 3P_J) in B-factory data

- $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron

IF one ignores the CSM: upper bound on CO

$$\langle 0|\mathcal{O}_{J/\psi}^{[1S_0^{(8)}]}|0\rangle + 4.0 \langle 0|\mathcal{O}_{J/\psi}^{[3P_0^{(8)}]}|0\rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$$

the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{>2\text{ch.tr.}}^{\text{non c\bar{c}}}$ = $0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg \text{ CS at NLO + rel. corr. : } 0.4-0.7$ pb

 no space for CO (1S_0 or 3P_J) in B-factory data

 - $e^+e^- \rightarrow J/\psi gg \text{ CO at NLO: } 0.9-1.0$ pb using universality with Tevatron

 IF one ignores the CSM: upper bound on CO

 $\langle 0 | O_{J/\psi}^{[1S_0^{(8)}]} | 0 \rangle + 4.0 \langle 0 | O_{J/\psi}^{[3P_0^{(8)}]} | 0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2}$ GeV3

- **P_T dependence in pp**
the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the $e^+ e^-$ analyses**
 - Recent Belle update of $e^+ e^- \rightarrow J/\psi + X_{\text{non } c\bar{c}}^{2\text{ ch.tr.}} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+ e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb
 - no space for CO (1S_0 or 3P_J) in B-factory data
 - $e^+ e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron
 - IF one ignores the CSM: upper bound on CO

$$\langle 0| \mathcal{O}^{J/\psi} [^1S_0^{(8)}] |0 \rangle + 4.0 \langle 0| \mathcal{O}^{J/\psi} [^3P_0^{(8)}] |0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$$

- **P_T dependence in pp**
 - NLO yield for CO channel overshoot data at low P_T

the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{non\text{ c}\bar{c}}^2 \text{ch.tr.} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg \text{ CS at NLO + rel. corr. : 0.4-0.7 pb}$
 - no space for CO (1S_0 or 3P_J) in B-factory data

 - $e^+e^- \rightarrow J/\psi gg \text{ CO at NLO: 0.9-1.0 pb using universality with Tevatron}$

 IF one ignores the CSM: upper bound on CO

 $\langle 0|\mathcal{O}^{J/\psi\left[^1S_0^{(8)} \right]}_J|0 \rangle + 4.0 \langle 0|\mathcal{O}^{J/\psi\left[^3P_0^{(8)} \right]}_J|0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2}$ GeV3

- **P_T dependence in pp**
 - NLO yield for CO channel overshoot data at low P_T

the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{\text{non cc}}^{>2\text{ch.tr.}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg \text{ CS at NLO + rel. corr. } : 0.4-0.7 \text{ pb}$

 no space for CO (1S_0 or 3P_J) in B-factory data

- $e^+e^- \rightarrow J/\psi gg \text{ CO at NLO: } 0.9-1.0 \text{ pb using universality with Tevatron}$

 IF one ignores the CSM: upper bound on CO

 $\langle 0|\mathcal{O}J/\psi[^1S_0^{(8)}]|0 \rangle + 4.0 \langle 0|\mathcal{O}J/\psi[^3P_0^{(8)}]|0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$

- **P_T dependence in pp**
- NLO yield for CO channel overshoot data at low P_T

the Colour Octet Dominance challenged at low/mid P_T in pp?

- **No need of CO contributions at low P_T**
- **Strong constraints from the e^+e^- analyses**
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{\text{non c\bar{c}}}^{2\text{ch.tr.}} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb
 - no space for CO (1S_0 or 3P_J) in B-factory data

- $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron
 - IF one ignores the CSM: upper bound on CO
 \[
 \langle 0|\mathcal{O}\left[^1S_0^{(8)} \right]|0 \rangle + 4.0 \langle 0|\mathcal{O}\left[^3P_0^{(8)} \right]|0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3
 \]

- **P_T dependence in pp**
 - NLO yield for CO channel overshoot data at low P_T

ISR resummations would smear the divergence at $P_T \rightarrow 0$ out.
Would this further enhance the CO yield at low P_T?
the Colour Octet Dominance challenged at low/mid P_T in pp?

- No need of CO contributions at low P_T
- Strong constraints from the $e^+ e^-$ analyses
 - Recent Belle update of $e^+ e^- \rightarrow J/\psi + X^{\text{non $c\bar{c}$}}_{\text{2ch.tr.}} = 0.43 \pm 0.09 \pm 0.09$ pb
 - $e^+ e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb
- no space for CO (1S_0 or 3P_J) in B-factory data

 - $e^+ e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron
 IF one ignores the CSM: upper bound on CO

 \[\langle 0 | \mathcal{O}^{J/\psi [^1S_0^{(8)}]} | 0 \rangle + 4.0 \langle 0 | \mathcal{O}^{J/\psi [^3P_0^{(8)}]} | 0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3 \]

- P_T dependence in pp
 - NLO yield for CO channel overshoot data at low P_T

- ISR resummations would smear the divergence at $P_T \rightarrow 0$ out

Would this further enhance the CO yield at low P_T?
Y & ψ polarisation within CSM and COM

Complete modification of the CSM polarisation at NLO (also at NNLO)

α = (σ T - 2σ L) / (σ T + 2σ L)
P_T (GeV)

LO
ϒ + bb
NLO
NNLO

COM polarisation basically unchanged at NLO

Polarisation from χ_Q Feed-down unknown at NLO:
α_{total} = F_{direct} . α_{direct} + (1 - F_{direct}) . α_{feed-down}
if α_{feed-down} ≃ 0 → F_{feed-down} α_{direct} (far from -1 and +1)

Without assumptions: If χ_Q → 3S_1 γ is E1: α_{max} from χ_Q = +1 and α_{min} from χ_Q = -0.45.

PHENIX data (|y| < 0.35)
QCD corrections and polarisation

Y & ψ polarisation within CSM and COM

→ **Complete modification** of the CSM polarisation at NLO (also at NNLO*)

\[\alpha = \frac{\sigma_T - 2 \sigma_L}{\sigma_T + 2 \sigma_L} \]

α = (σ\(_T\) - 2σ\(_L\))/(σ\(_T\) + 2σ\(_L\))

P\(_T\) (GeV)

LO

ϒ + bb

NLO

NNLO

PHENIX data (|y|<0.35)

direct NLO

+ approx. Feed-down

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 11 / 17
Y & ψ polarisation within CSM and COM

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO
Y & ψ polarisation within CSM and COM

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO
Y & ψ polarisation within CSM and COM

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

→ Polarisation from χQ Feed-down unknown at NLO:
→ **Complete modification** of the CSM polarisation at NLO (also at NNLO*)

→ **COM polarisation** basically unchanged at NLO

→ Polarisation from χ_Q Feed-down unknown at NLO:

\[
\alpha_{tot} = F_{dir.} \alpha_{dir.} + \left(1 - F_{dir.}\right) \alpha_{FD} \quad \text{if } \alpha_{FD} \approx 0 \quad \Rightarrow \quad F_{direct} \alpha_{direct} \quad \text{(far from -1 and +1)}
\]
Y & ψ polarisation within CSM and COM

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

→ Polarisation from χ_Q Feed-down unknown at NLO:
 - $\alpha_{tot} = F_{dir.}\alpha_{dir.} + (1 - F_{dir.})\alpha_{FD} \quad \text{if } \alpha_{FD} \approx 0 \quad F_{direct}\alpha_{direct}$ (far from -1 and +1)
 - Without assumptions:
Y & ψ polarisation within CSM and COM

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

→ Polarisation from χQ Feed-down unknown at NLO:
 - \(\alpha_{tot} = F_{dir} \alpha_{dir} + (1 - F_{dir}) \alpha_{FD} \)
 - \(\text{if } \alpha_{FD} \approx 0 \rightarrow F_{direct} \alpha_{direct} \) (far from -1 and +1)
 - Without assumptions:

![Graph showing polarisation](image-url)
QCD corrections and polarisation

Y & ψ polarisation within CSM and COM

→ **Complete modification of the CSM polarisation at NLO (also at NNLO*)**

→ **COM polarisation basically unchanged at NLO**

→ **Polarisation from χ_Q Feed-down unknown at NLO**:

- \[\alpha_{tot} = F_{dir} \alpha_{dir} + (1 - F_{dir}) \alpha_{FD} \]

 if \[\alpha_{FD} \approx 0 \] then \[F_{direct} \alpha_{direct} \] (far from -1 and +1)

- Without assumptions:

 - If \[\chi_Q \rightarrow ^3 S_1 \gamma \] is E1: \[\alpha_{max}^{from \chi_Q} = +1.00 \] and \[\alpha_{min}^{from \chi_Q} = -0.45 \]
Y & ψ polarisation within CSM and COM

→ **Complete modification** of the CSM polarisation at NLO (also at NNLO*)

→ **COM polarisation basically unchanged** at NLO

→ **Polarisation from χ_Q Feed-down unknown** at NLO:
 - \(\alpha_{tot} = F_{dir} \cdot \alpha_{dir} + (1 - F_{dir}) \cdot \alpha_{FD} \) \(\xrightarrow{\text{if} \ \alpha_{FD} \approx 0} \) \(F_{direct} \cdot \alpha_{direct} \) (far from -1 and +1)
 - Without assumptions:
 - If \(\chi_Q \rightarrow ^3 S_1 \gamma \) is E1: \(\alpha_{\chi_Q}^{max} = +1.00 \) and \(\alpha_{\chi_Q}^{min} = -0.45 \)

J.P. Lansberg (IPNO) Quarkonium production at the LHC May 24, 2011 11 / 17
Part II

what we expect from the LHC:
Part II

what we expect from the LHC: new measurements
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
New observables

\[J/\psi + D \text{ or } J/\psi + \text{lepton} \text{ in the yield integrated over } P_T \]

- peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rapidity dependence gives info on $c(x)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$
 - Rapidity dependence gives info on $c(x)$

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$
 - Rapidity dependence gives info on $c(x)$

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)
 - Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
New observables

\[J/\psi + D \text{ or } J/\psi + \text{lepton} \text{ in the yield integrated over } P_T \]

- peak at \(\Delta \phi = \pi \)
- Rapidity dependence gives info on \(c(x) \)

\[J/\psi + D \text{ or } J/\psi + \text{lepton} \text{ at large } P_T \text{ (say, } P_T > 15 \text{ GeV}) \]

- Near \(D \) or lepton: signal of \(c \rightarrow J/\psi + c \) “fragmentation”
- No near \(D \) in \(gg \rightarrow gg \rightarrow ^3S_1^{[8]} g \rightarrow J/\psi c\bar{c} \) (If any \(c \), both are away)
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$
 - Rapidity dependence gives info on $c(x)$

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)
 - Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
 - No near D in $gg \rightarrow gg \rightarrow ^3S_1^{[8]} g \rightarrow J/\psi c \bar{c}$ (If any c, both are away)
 → $\Upsilon + b\bar{b}$: $\Upsilon + \text{one } b$ tagged jet

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
New observables

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

 - peak at $\Delta \phi = \pi$

 - Rapidity dependence gives info on $c(x)$

→ $J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

 - Near D or lepton: signal of $c \to J/\psi + c$ “fragmentation”

 - No near D in $gg \to gg \to 3S_1^{[8]} g \to J/\psi c\bar{c}$ (If any c, both are away)

→ $\Upsilon + b\bar{b}$: $\Upsilon + \text{one } b\text{ tagged jet}$
New observables

$\to J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
New observables

$\rightarrow J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
New observables

→ $J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^{[8]}$ and $^3P_J^{[8]}$)
New observables

→ $J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
- CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed (at NLO)

At NNLO \star, CS rate clearly above (high) expectation from CO

Clearly, new info on CS vs CO w.r.t inclusive case!

Possible: see (c, b)−jet + γ studies by D0 up to $P_T^{\gamma} \simeq 150$ GeV!

D0, PRL102 (2009) 192002.

J.P. Lansberg (IPNO)
New observables

$\rightarrow J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
- CS rate at NLO \sim conservative (high) expectation from CO

\[\text{R.Li and J.X. Wang, PLB 672:51,2009} \]

- CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed
 (at NLO)
New observables

→ $J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1 S_0^8$ and $^3 P_J^8$)
- CS rate at NLO \sim conservative (high) expectation from CO
- CO rates may be clearly lower if $^1 S_0^8$ and $^3 P_J^8$ are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

R.Li and J.X. Wang, PLB 672:51,2009

CO rates may be clearly lower if $^1 S_0^8$ and $^3 P_J^8$ are indeed suppressed

At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

New observables

→ $J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
- CS rate at NLO \simeq conservative (high) expectation from CO
- CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

Clearly, new info on CS vs CO w.r.t inclusive case!
New observables

$\rightarrow J/\psi + \gamma$

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the c-quark loop
- Gluon fragmentation associated with $C = +1$ octet ($^1S_0^8$ and $^3P_J^8$)
- CS rate at NLO \sim conservative (high) expectation from CO
- CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

Clearly, new info on CS vs CO w.r.t inclusive case!

Possible: see $(c, b) - jet + \gamma$ studies by D0 up to $P_T^\gamma \sim 150$ GeV!
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- Drawback: large theoretical uncertainties. . .
 Dominant contributions are known only at Born order (ex: $gg \rightarrow J/\psi gg$)
 (N)NLO correction alter the polarization: transverse \rightarrow longitudinal

- Very soon, the LHC results on inclusive yields will be more precise than the theory...
 The time has come for another look with new observables at the LHC or elsewhere!
Conclusions and Outlooks

- **LO** pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- Agrees with the strong reduction of CO contributions at low/mid P_T expected from $e^+ e^-$ analyses

Drawback: large theoretical uncertainties.

Dominant contributions are known only at Born order (ex: $gg \rightarrow J/\psi gg$)

(N)NLO correction alter the polarization: transverse \rightarrow longitudinal

Y et, most polarisation data are prompt

Very soon, the LHC results on inclusive yields will be more precise than the theory...

The time has come for another look with new observables at the LHC or elsewhere!
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \to Qg$

- Agrees with the **strong reduction of CO contributions** at low/mid P_T
 expected from $e^+ e^-$ analyses

- **LO CSM fails** as far as $d\sigma / dP_T$ is concerned
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- Agrees with the **strong reduction of CO contributions** at low/mid P_T
 expected from e^+e^- analyses

- LO CSM **fails** as far as $d\sigma/dP_T$ is concerned

- Higher-QCD corrections open **leading** P_T channel: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels

Drawback: large theoretical uncertainties...
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- Agrees with the **strong reduction of CO contributions** at low/mid P_T expected from e^+e^- analyses

- LO CSM **fails** as far as $d\sigma/dP_T$ is concerned

- Higher-QCD corrections open **leading P_T channel**: they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback**: large theoretical uncertainties...
 Dominant contributions are known only at Born order (ex: $gg \rightarrow J/\psi ggg$)
Conclusions and Outlooks

- **LO pQCD (CSM)** reproduces the yield:
 relevant for heavy-ion studies: LO CSM is \(gg \rightarrow Qg \)

- Agrees with the **strong reduction of CO contributions** at low/mid \(P_T \)
 expected from \(e^+ e^- \) analyses

- LO CSM **fails** as far as \(d\sigma / dP_T \) is concerned

- Higher-QCD corrections open **leading** \(P_T \) channel: they are needed!
 \(2 \rightarrow 3, 2 \rightarrow 4 \) channels

- **Drawback**: large theoretical uncertainties...
 Dominant contributions are known only at Born order (ex: \(gg \rightarrow J/\psi ggg \))

- (N)NLO correction alter the polarization: **transverse \(\rightarrow \) longitudinal**
 Yet, most polarisation data are prompt

- Very soon, the LHC results on inclusive yields will be
 more precise than the theory ...
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \to Qg$

- Agrees with the **strong reduction of CO contributions** at low/mid P_T
 expected from e^+e^- analyses

- LO CSM **fails** as far as $d\sigma/dP_T$ is concerned

- Higher-QCD corrections open **leading P_T channel:** they are needed!
 $2 \to 3, 2 \to 4$ channels

- **Drawback**: large theoretical uncertainties.
 Dominant contributions are known only at Born order (ex: $gg \to J/\psi ggg$)

- (N)NLO correction alter the polarization: **transverse \to longitudinal**
 Yet, most polarisation data are prompt

- Very soon, the LHC results on inclusive yields will be
 more precise than the theory ...

- The time has come for another look with **new observables**
 at the LHC or elsewhere!
Let us apply the lessons learnt in $pp (gg \rightarrow \psi g)$ to compute CNM in PbPb:

Without P_T cut and forward (ALICE acceptance)
Let us apply the lessons learnt in $pp (gg \rightarrow \psi g)$ to compute CNM in PbPb:

- Without P_T cut and forward (ALICE acceptance)
- With $P_T > 6.5$ GeV cut and mostly central (CMS/ATLAS acceptance)
Let us apply the lessons learnt in $pp \ (gg \rightarrow \psi g)$ to compute CNM in PbPb:

- Without P_T cut and forward (ALICE acceptance)
- With $P_T > 6.5$ GeV cut and mostly central (CMS/ATLAS acceptance)

Non trivial effect of the P_T cut. $\sigma_{\text{effective abs}} = 0 \text{mb}$?
Let us apply the lessons learnt in $pp \ (gg \to \psi g)$ to compute CNM in PbPb:

Without P_T cut and forward (ALICE acceptance)

With $P_T > 6.5$ GeV cut and mostly central (CMS/ATLAS acceptance)

- Non trivial effect of the P_T cut. $\sigma_{\text{effective abs}} = 0$mb ?
- Need for a better understanding of shadowing (at small and not so small x)
Part IV

Backup
Describing the mid- and high-P_T's: QCD corrections
Describing the mid- and high-P_T's: QCD corrections

P. Artoisenet, J. P. L, F. Maltoni, PLB 653:60, 2007

$\frac{d\sigma}{dP_T}|_{|y|<0.4} \times Br (pb/GeV)$

P_T (GeV)

$\Upsilon (1S)$ prompt data x F direct

LO

ψ or Υ

$\alpha_s^3 P_T^{-8}$

Yet, the impact of double t-channel gluon exchange at α_s^5 is unsure (NNLO \star is not a complete NNLO)
Describing the mid- and high-\(P_T\)'s: QCD corrections

P. Artoisenet, J.P.L, F. Maltoni, PLB 653:60, 2007

\[\frac{d\sigma}{dP_T} \mid |y|<0.4 \times Br \ (pb/GeV) \]

\[P_T \ (GeV) \]

\[\Upsilon (1S) \text{ prompt data } \times F_{\text{direct}} \]

\[\alpha_3^3 P_T^{-8} \]

\[\alpha_4^4 P_T^{-6} \]

Yet, the impact of double \(t\)-channel gluon exchange at \(\alpha_5^5\) is unsure (NNLO ⋆ is not a complete NNLO)
Describing the mid- and high-P_T's: QCD corrections

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007

Yet, the impact of double t-channel gluon exchange at α_S^5 is unsure (NNLO* is not a complete NNLO)
Describing the mid- and high-P_T’s: QCD corrections

Yet, the impact of double t-channel gluon exchange at α_5^S is unsure (NNLO* is not a complete NNLO)
Analogy with the P_T spectrum for the Z^0 boson
New observables

$\rightarrow J/\psi + \text{hadron azimuthal correlations}$

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

$gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)

$gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi + \text{activity between } 0 \text{ and } \pi$

$gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi + \text{activity between } 0 \text{ and } \pi + \text{near jet ?}$
New observables

→ $J/\psi +$ hadron azimuthal correlations

New observables
→ $J/\psi +$ hadron azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
New observables

→ J/ψ + hadron azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*
New observables

→ \(J/\psi + \text{hadron} \) azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: \(gg \rightarrow J/\psi g \))

Need for updates with NLO and NNLO*

- \(gg \rightarrow J/\psi g \): peak at \(\Delta \phi = \pi \) (activity from the recoiling jet)
New observables

$\rightarrow J/\psi + \text{hadron azimuthal correlations}$

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO
 - $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
 - $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi + \text{activity between 0 and } \pi$
New observables

$J/\psi + \text{hadron}$ azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet?

Talk by M. Cervantes (STAR) at WWND 2011

J.P. Lansberg (IPNO)
New observables

→ $J/\psi +$ hadron azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi +$ activity between 0 and $\pi +$ near jet?

→ $\Upsilon +$ hadron azimuthal correlations

Talk by M. Cervantes (STAR) at WWND 2011
Gluon shadowing at different scales for Pb ions

http://lapth.in2p3.fr/generators

$Q^2 = 10\text{ GeV}^2$

http://lapth.in2p3.fr/generators

$Q^2 = 25\text{ GeV}^2$

http://lapth.in2p3.fr/generators

$Q^2 = 50\text{ GeV}^2$