

Quarkonium production at the LHC: QCD corrections and new observables

J.P. Lansberg IPN Orsay – Paris-Sud 11

Quark Matter 2011

XXII International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

May 23-28 2011 Annecy, France

Quarkonium production at the LHC

May 24, 2011 1 / 17

A > < > > < >

Outline

Context:

- The CSM predictions account correctly for the yield
- 2 Difficulties in describing mid- and high- P_T data ?
- 3 Colour Octet Dominance is challenged at low/mid P_T in pp
 - QCD corrections and polarisation

New Observables:

A D N A (P) N A B N A B N

Part I

Context

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

・ロト ・四ト ・ヨト ・ヨト

the CSM predictions account for the yield

 \rightarrow The yield vs. \sqrt{s}

JPL, Pos(ICHEP 2010), 206 (2010) (here only LO curves)

- Unfortunately, very large th. uncertainties: masses, scales (μ_R , μ_F), gluon PDFs at low *x* and Q^2 , ...
- Good agreement with RHIC, Tevatron and LHC data

(multiplied by a constant F^{direct})

the CSM predictions account for the yield

 \rightarrow The yield vs. \sqrt{s}

JPL, Pos(ICHEP 2010), 206 (2010) (here only LO curves)

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q², ...
- Good agreement with RHIC, Tevatron and LHC data

(multiplied by a constant F^{direct})

the CSM predictions account for the yield $\left(\frac{d\sigma}{dv}\right)$

 \rightarrow RHIC ($\sqrt{s} = 200 \text{ GeV}$)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

- The second sec

the CSM predictions account for the yield $\left(\frac{d\sigma}{dv}\right)$

 \rightarrow RHIC ($\sqrt{s} = 200 \text{ GeV}$)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

(日) (周) (日) (日)

The NNLO^{\star} is not a complete NNLO \rightarrow possibility of (large) uncanceled logs !

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 6 / 17

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs !

The NNLO* is not a complete NNLO \rightarrow possibility of (large) uncanceled logs !

J.P. Lansberg (IPNO)

May 24, 2011 6 / 17

э

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 6 / 17

May 24, 2011 6 / 17

Models vs. LHCb data for the J/ψ (Courtesy of J.He & P. Robbe)

Models vs. LHCb data for the Y(borrowed from G. Manca, April'11)

Models vs. ATLAS data for the J/ψ (borrowed from D. Price, April'11)

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 9 / 17

No need of CO contributions at low P_T

э

▶ < ∃ >

4 A 1

- No need of CO contributions at low P_T
- Strong constraints from the e^+e^- analyses

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- No need of CO contributions at low P_T
- Strong constraints from the e^+e^- analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X_{non \ c\bar{c}}^{>2ch.tr.} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$

A B < A B </p>

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non cc} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ **CS** at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

May 24, 2011 10 / 17

A B < A B </p>

J.P. Lansberg (IPNO)

the Colour Octet Dominance challenged at low/mid P_T in pp ?

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ c\overline{c}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron IF one ignores the CSM: upper bound on CO y. Zhang *et al.*, PRDB1:034015,2010. $\langle 0|\mathcal{O}^{J/\psi}[{}^1S_0^{(8)}]|0\rangle + 4.0 \langle 0|\mathcal{O}^{J/\psi}[{}^3P_0^{(8)}]|0\rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non c\bar{c}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron IF one ignores the CSM: upper bound on CO v. Zhang *et al.*, PRD81:034015,2010. $\langle 0|\mathcal{O}^{J/\psi}[{}^1S_0^{(8)}]|0\rangle + 4.0 \langle 0|\mathcal{O}^{J/\psi}[{}^3P_0^{(8)}]|0\rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \text{ GeV}^3$

• *P_T* dependence in *pp*

くぼう くほう くほう 二日

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ c\overline{c}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron

IF one ignores the CSM: upper bound on CO Y. Zhang et al., PRD81:034015,2010.

 $\langle 0 | \mathcal{O}^{J/\psi} [^1 S_0^{(8)}] | 0 \rangle + 4.0 \, \langle 0 | \mathcal{O}^{J/\psi} [^3 P_0^{(8)}] | 0 \rangle / \, m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \, \mathrm{GeV^3}$

P_T dependence in pp

NLO yield for CO channel overshoot data at low P_T

過 ト イヨ ト イヨ ト ニヨ

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ cc} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron

IF one ignores the CSM: upper bound on CO Y. Zhang et al., PRD81:034015,2010.

- $\langle 0 | \mathcal{O}^{J/\psi} [^1 S_0^{(8)}] | 0 \rangle + 4.0 \, \langle 0 | \mathcal{O}^{J/\psi} [^3 P_0^{(8)}] | 0 \rangle / \, m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \, \mathrm{GeV^3}$
- P_T dependence in pp

NLO yield for CO channel overshoot data at low P_T

May 24, 2011 10 / 17

(B)

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ cc} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron

IF one ignores the CSM: upper bound on CO Y. Zhang et al., PRD81:034015,2010.

 $\langle 0 | \mathcal{O}^{J/\psi} [^1S_0^{(8)}] | 0 \rangle + 4.0 \, \langle 0 | \mathcal{O}^{J/\psi} [^3P_0^{(8)}] | 0 \rangle / \, \textit{m}_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \, \mathrm{GeV^3}$

P_T dependence in pp

NLO yield for CO channel overshoot data at low P_T

May 24, 2011 10 / 17

(B)

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ c\overline{c}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

- $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron IF one ignores the CSM: upper bound on CO v. Zhang et al., PRDB1:034015,2010.
 - $\begin{array}{l} \text{ lignores the CSW: upper bound on CO} \\ \langle 0 | \mathcal{O}^{J/\psi} [^1S_0^{(8)}] | 0 \rangle + 4.0 \ \langle 0 | \mathcal{O}^{J/\psi} [^3P_0^{(8)}] | 0 \rangle / m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \ \mathrm{GeV}^3 \end{array}$
- *P_T* dependence in *pp*
 - NLO yield for CO channel overshoot data at low P_T

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

< 回 > < 三 > < 三 >

- No need of CO contributions at low P_T
- Strong constraints from the e⁺e⁻ analyses
 - Recent Belle update of $e^+e^- \rightarrow J/\psi + X^{>2ch.tr.}_{non \ c\overline{c}} = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$
 - $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

- $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron IF one ignores the CSM: upper bound on CO y. Zhang et al., PRD81:034015,2010.
 - $\begin{array}{l} \text{ lignores the CSM: upper bound on CO} \\ \langle 0 | \mathcal{O}^{J/\psi} [^1S_0^{(8)}] | 0 \rangle + 4.0 \, \langle 0 | \mathcal{O}^{J/\psi} [^3P_0^{(8)}] | 0 \rangle / \, m_c^2 \leq (2.0 \pm 0.6) \times 10^{-2} \, \mathrm{GeV^3} \end{array}$
- P_T dependence in pp
 - NLO yield for CO channel overshoot data at low P_T

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 10 / 17

QCD corrections and polarisation

Y & ψ polarisation within CSM and COM

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, PLB695:149-156,2011.

э

イロト イヨト イヨト イヨト

Y & ψ polarisation within CSM and COM

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, PLB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

< 同 ト < 三 ト < 三

Y & ψ polarisation within CSM and COM

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008 JPL, EPL/C 61,693,2009. JPL, PLB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

- The second sec

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008 JPL, EPJC 61,693,2009. JPL, LEB695:149-156.2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 11 / 17

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008 JPL, EPJC 61,693,2009. JPL, JEB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

- → COM polarisation basically unchanged at NLO
- → Polarisation from χ_Q Feed-down unknown at NLO:

3 > < 3

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPL/C 61,693,2009. JPL, PLB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

- → COM polarisation basically unchanged at NLO
- → Polarisation from χ_Q Feed-down unknown at NLO:
 - $\alpha_{tot} = F_{dir.} \alpha_{dir.} + (1 F_{dir.}) \alpha_{FD} \xrightarrow{if \alpha_{FD} \simeq 0} F_{firect} \alpha_{direct}$ (far from -1 and +1)

▶ ∢ ⊒

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008 JPL, EPJC 61,693,2009. JPL, JELB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

- → COM polarisation basically unchanged at NLO
- → Polarisation from χ_Q Feed-down unknown at NLO:
 - $\alpha_{tot} = F_{dir.} \alpha_{dir.} + (1 F_{dir.}) \alpha_{FD} \xrightarrow{if \alpha_{FD} \simeq 0} F_{firect} \alpha_{direct}$ (far from -1 and +1)
 - Without assumptions:

▶ ∢ 🗐

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008 JPL, EPJC 61,693,2009. JPL, JELB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

- → COM polarisation basically unchanged at NLO
- → Polarisation from χ_Q Feed-down unknown at NLO:
 - $\alpha_{tot} = F_{dir.} \alpha_{dir.} + (1 F_{dir.}) \alpha_{FD} \xrightarrow{if \alpha_{FD} \simeq 0} F_{firect} \alpha_{direct}$ (far from -1 and +1)
 - Without assumptions:

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, PLB695:149-156,2011

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

- → COM polarisation basically unchanged at NLO
- → Polarisation from χ_Q Feed-down unknown at NLO:
 - $\alpha_{tot} = F_{dir.} \alpha_{dir.} + (1 F_{dir.}) \alpha_{FD} \xrightarrow{if \alpha_{FD} \simeq 0} F_{firect} \alpha_{direct}$ (far from -1 and +1) • Without assumptions:
 - If $\chi_Q \rightarrow^3 S_1 \gamma$ is E1: $\alpha_{from \chi_Q}^{max} = +1.00$ and $\alpha_{from \chi_Q}^{min} = -0.45$

May 24, 2011 11 / 17

3 1 4 3 1

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPL/C 61,693,2009. JPL, PLB695:149-156,2011.

→ Complete modification of the CSM polarisation at NLO (also at NNLO*)

→ COM polarisation basically unchanged at NLO

→ Polarisation from χ_Q Feed-down unknown at NLO:

• $\alpha_{tot} = F_{dir.} \alpha_{dir.} + (1 - F_{dir.}) \alpha_{FD} \xrightarrow{if \alpha_{FD} \simeq 0} F_{firect} \alpha_{direct}$ (far from -1 and +1) • Without assumptions:

Part II

what we expect from the LHC:

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 12 / 17

æ

A B > A B >

Part II

what we expect from the LHC: new measurements

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 12 / 17

New observables

 $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton in the yield integrated over } P_T$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

イロト イポト イヨト イヨト

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

イロン イ理 とく ヨン イヨン

$\mathcal{Q} + \mathcal{Q}$

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton in the yield integrated over } P_T$
 - peak at $\Delta \phi = \pi$

• Rapidity dependence gives info on c(x)

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics

< E

$\mathcal{Q} + \mathcal{Q}$

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• Rapidity dependence gives info on *c*(*x*)

plot for RHIC kinematics

 $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15 \text{ GeV}$)

May 24, 2011 13 / 17

-

$\mathcal{Q} + \mathcal{Q}$

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• Rapidity dependence gives info on c(x)

plot for RHIC kinematics

→ $J/\psi + D$ or J/ψ +lepton at large P_T (say, $P_T > 15$ GeV) • Near *D* or lepton: signal of $c \rightarrow J/\psi + c$ "fragmentation"

May 24, 2011 13 / 17

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• Rapidity dependence gives info on c(x)

plot for RHIC kinematics

- $\rightarrow J/\psi + D \text{ or} J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15 \text{ GeV}$)
 - Near *D* or lepton: signal of $c \rightarrow J/\psi + c$ "fragmentation"
 - No near *D* in $gg o gg o {}^3S_1^{[8]}g o J/\psi c\bar{c}$ (If any *c*, both are away)

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• Rapidity dependence gives info on c(x)

plot for RHIC kinematics

→ $J/\psi + D$ or J/ψ +lepton at large P_T (say, $P_T > 15$ GeV) • Near *D* or lepton: signal of $c \rightarrow J/\psi + c$ "fragmentation" • No near *D* in $gg \rightarrow gg \rightarrow {}^{3}S_{1}^{[8]}g \rightarrow J/\psi c\bar{c}$ (If any *c*, both are away) → Y + $b\bar{b}$: Y + one *b* tagged jet

May 24, 2011 13 / 17

New observables

- $\rightarrow J/\psi + D \text{ or } J/\psi + \text{lepton}$ in the yield integrated over P_T
 - peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

• Rapidity dependence gives info on c(x)

plot for RHIC kinematics

New observables

 $\rightarrow J/\psi + \gamma$

• At high energy, 2 gluons in the initial states: no quark

イロン イ理 とく ヨン イヨン

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the *c*-quark loop

э

イロト イポト イヨト イヨト

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the *c*-quark loop
 - Gluon fragmentation associated with C = +1 octet $\binom{1}{S_0^{[8]}}$ and $\binom{3}{P_J^{[8]}}$

3

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the *c*-quark loop
 - Gluon fragmentation associated with C = +1 octet $({}^{1}S_{0}^{[8]}$ and ${}^{3}P_{J}^{[8]})$
 - CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the c-quark loop
 - Gluon fragmentation associated with C = +1 octet $\begin{pmatrix} 1 S_0^{[8]} & \text{and } {}^{3}P_J^{[8]} \end{pmatrix}$
 - CS rate at NLO \simeq conservative (high) expectation from CO
 - CO rates may be clearly lower if ${}^{1}S_{0}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ are indeed suppressed (at NLO)

3

14/17

May 24, 2011

$\mathcal{Q}+\gamma$

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the c-quark loop
 - Gluon fragmentation associated with C = +1 octet $\begin{pmatrix} 1 S_0^{[8]} & \text{and } {}^{3}P_J^{[8]} \end{pmatrix}$
 - CS rate at NLO ~ conservative (high) expectation from CO BLi and J.X. Wang. PLB 672:51.2009
 - CO rates may be clearly lower if ${}^{1}S_{0}^{[8]}$ and ${}^{3}P_{I}^{[8]}$ are indeed suppressed
 - At NNLO*, CS rate clearly above (high) expectation from CO

JPL, PLB 679:340,2009.

(at NLO)

$\mathcal{Q}+\gamma$

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the c-quark loop
 - Gluon fragmentation associated with C = +1 octet $\binom{1}{S_0^{[8]}}$ and $\binom{3}{P_J^{[8]}}$
 - CS rate at NLO ~ conservative (high) expectation from CO BLi and J.X. Wang. PLB 672:51.2009
 - CO rates may be clearly lower if ${}^{1}S_{0}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ are indeed suppressed
 - At NNLO*, CS rate clearly above (high) expectation from CO

JPL, PLB 679:340,2009.

(at NLO)

Clearly, new info on CS vs CO w.r.t inclusive case !

May 24, 2011 14 / 17

$\mathcal{Q}+\gamma$

New observables

- $\rightarrow J/\psi + \gamma$
 - At high energy, 2 gluons in the initial states: no quark
 - The photon needs to be emitted by the c-quark loop
 - Gluon fragmentation associated with C = +1 octet $({}^{1}S_{0}^{[8]}$ and ${}^{3}P_{J}^{[8]})$
 - CS rate at NLO ~ conservative (high) expectation from CO BLi and J.X. Wang. PLB 672:51.2009
 - CO rates may be clearly lower if ${}^{1}S_{0}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ are indeed suppressed
 - At NNLO*, CS rate clearly above (high) expectation from CO

JPL, PLB 679:340,2009.

(at NLO)

- Clearly, new info on CS vs CO w.r.t inclusive case !
- Possible: see $(c, b) jet + \gamma$ studies by D0 up to $P_T^{\gamma} \simeq 150 \text{ GeV}$!

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

D0, PRE102 (2009) 192002.

Part III

Conclusions and Outlooks

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 15 / 17

2

イロト イポト イヨト イヨト

• LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg
ightarrow \mathcal{Q}g$

・ 何 ト ・ ヨ ト ・ ヨ ト

• LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg
ightarrow \mathcal{Q}g$

 Agrees with the strong reduction of CO contributions at low/mid P_T expected from e⁺e⁻ analyses

< 回 ト < 三 ト < 三 ト

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e^+e^- analyses
- LO CSM fails as far as $d\sigma/dP_T$ is concerned

A B < A B </p>

LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e^+e^- analyses
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- Higher-QCD corrections open leading P_T channel: they are needed ! $2 \rightarrow 3, 2 \rightarrow 4$ channels

くぼう くほう くほう

• LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg
ightarrow \mathcal{Q}g$

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e⁺e⁻ analyses
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- Higher-QCD corrections open leading P_T channel: they are needed ! 2 \rightarrow 3, 2 \rightarrow 4 channels
- Drawback: large theoretical uncertainties... Dominant contributions are known only at Born order (ex: gg → J/ψggg)

イロト イポト イヨト イヨト 二日

• LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg
ightarrow \mathcal{Q}g$

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e⁺e⁻ analyses
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- Higher-QCD corrections open leading P_T channel: they are needed ! 2 \rightarrow 3, 2 \rightarrow 4 channels
- Drawback: large theoretical uncertainties... Dominant contributions are known only at Born order (ex: gg → J/ψggg)
- (N)NLO correction alter the polarization : transverse → longitudinal Yet, most polarisation data are prompt
- Very soon, the LHC results on inclusive yields will be more precise than the theory ...

イロト 不得 トイヨト イヨト 二日

• LO pQCD (CSM) reproduces the yield:

relevant for heavy-ion studies: LO CSM is $gg
ightarrow \mathcal{Q}g$

- Agrees with the strong reduction of CO contributions at low/mid P_T expected from e⁺e⁻ analyses
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- Higher-QCD corrections open leading P_T channel: they are needed ! 2 \rightarrow 3, 2 \rightarrow 4 channels
- Drawback: large theoretical uncertainties... Dominant contributions are known only at Born order (ex: gg → J/ψggg)
- (N)NLO correction alter the polarization : transverse → longitudinal Yet, most polarisation data are prompt
- Very soon, the LHC results on inclusive yields will be more precise than the theory ...
- The time has come for another look with **new observables**

at the LHC or elsewhere !

In the meantime, ...

∎ ▶ < ≣ ▶ ≣ ∽ ९.० May 24, 2011 17 / 17

イロト イヨト イヨト イヨト

In the meantime, ...

Quarkonium production at the LHC

50

100 150 200 250 300 350 400

Npart

May 24, 2011 17/17

э

イロト イヨト イヨト イヨト

J.P. Lansberg (IPNO)

In the meantime, ...

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 17 / 17

э

イロト イポト イヨト イヨト

In the meantime, ...

• Need for a better understanding of shadowing (at small and not so small x)

J.P. Lansberg (IPNO)

May 24, 2011 17 / 17

Part IV

Backup

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 18 / 17

2

イロト イロト イヨト イヨト

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 19 / 17

3

(日) (周) (日) (日)

May 24, 2011 19 / 17

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

May 24, 2011 19 / 17

・ 何 ト ・ ヨ ト ・ ヨ ト

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 19 / 17

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 19 / 17

Analogy with the P_T spectrum for the Z^0 boson

J.P. Lansberg (IPNO)

Quarkonium production at the LHC

May 24, 2011 20 / 17

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

イロト イポト イヨト イヨト

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

イロト イポト イヨト イヨト

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

• PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

▶ ∢ ≣

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO*

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO*
 - $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)

A 1

A B > A B >

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO*
 - $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
 - $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO*
 - $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
 - $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π
 - $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet ?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $\rightarrow J/\psi +$ hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO*
 - $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
 - $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π
 - $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet ?

→ Y + hadron azimuthal correlations

Talk by M. Cervantes (STAR) at WWND 2011

May 24, 2011

21/17

Quarkonium production at the LHC

Gluon shadowing at different scales for Pb ions

