

Ratio of J/ Ψ to ρ Photoproduction Cross Sections at the Relativistic Heavy Ion Collider with STAR

Janet Seger (Creighton University), for the STAR Collaboration

Abstract

The intense electromagnetic fields associated with relativistic heavy ions make a heavy-ion collider a unique tool to study two-photon and photonuclear interactions. In this poster, we present a new measurement of J/Y photoproduction in 200 GeV AuAu collisions at RHIC. The p_T distribution of the J/ Ψ mesons peaks at very low p_T , consistent with expectations for coherent photoproduction. Both the photoproduction cross section and the J/Ψ rapidity distribution are expected to show the effects of gluon shadowing. We present a measurement of the ratio of J/Ψ to ρ^0 meson cross sections in 200 GeV AuAu collisions, as well as a distribution of rapidity within |y|< 1 for the J/ Ψ mesons. The measured results are compared to theoretical models.

Ultraperipheral Collisions

•Nuclei miss each other and interact via long range electromagnetic fields •Weizsacker-Williams: field of almost-real photons $h^{\uparrow} / /$

Analysis and Results

Event Selection: • Fewer than 10 total tracks in an event

•Virtuality $Q^2 < (h/R_A)^2$ •Max photon energy ~ $\gamma h/R_A$ ~ 3 GeV with gold at RHIC •Photon flux ~ Z^2

•Higher flux with heavy ions \rightarrow greater probability of multi-photon interactions

Vector meson production

•Photons fluctuate into quark-antiquark pairs

•These scatter elastically from the other nucleus and emerge as real vector mesons

•Cross sections are large

•Coherent production \rightarrow low momentum transfer, $\sim \hbar/R_A$

Interest in heavy vector mesons

- J/ψ, ψ', Υ
 - Probe short distance scales
 - Scattering may be described via 2-gluon exchange
 - Sensitive to gluon distribution at
 - $x = M_V/2\gamma m_p \exp(\pm y) \rightarrow x \approx 10^{-2}$ and $Q^2 \approx M_V^2$
 - Directly probe 'new phases of matter' like color glass condensate
 - Understand initial state for central collisions

 $\sigma_{\gamma A \to VA}(s_{\gamma N}) = \frac{d\sigma_{\gamma N \to VN}(s_{\gamma N})}{1}$ $\overline{AG_N(x_1, x_2, t)} = 0, Q_{\text{eff}}^2$ Frankfurt, et al. arXiv:hep-ph/0702212v1

•Exactly two tracks emerging from central vertex •Pair $p_{T} < 0.150 \text{ GeV} \rightarrow \text{coherent production}$

•Vector meson rapidity: 0.05 < |y| < 1•Lower limit reduces cosmic rays •Upper limit from STAR acceptance

Analysis:

- No particle ID has been applied
- •Data is corrected for STAR acceptance using Starlight Monte Carlo
- •Background modeled with like-sign pairs, scaled to match data for $p_T > 0.2$ GeV
- •All error bars are statistical only

 ρ^0 candidates (opposite-sign pairs with $0.4 < m_{INV} < 1.1$)

а 2000

 J/Ψ candidates (opposite-sign pairs with $2.5 < m_{INV} < 3.5$)

Pair p_{T} :

Blue: data Red: background estimated with like-sign pairs

For analysis, only events with $p_T < 0.15$ GeV are used

Pair rapidity:

~ 650,000 ρ^0 and

~ 125 J/Ψ

After preliminary acceptance corrections; time-dependence of TPC acceptance has not been accounted for

A typical ρ^0 event

Two triggers for 2009-10 dataset:

Dip at y = 0 is from cut to remove cosmic rays

Ratio of coherent photoproduction cross sections: $J/\Psi / \rho^0$

Blue: acceptance-corrected data

Red: Klein-Nystrand model with mutual Coulomb dissociation

S.R. Klein, J. Nystrand, Phys. Rev. C 60(1999)014903

• Minimum Bias (37 M events)

•At least 1 neutron in each zero degree calorimeter •Selects events with mutual Coulomb dissociation •Low multiplicity

•Topology Trigger (1.5 M events) •uses time of flight detector surrounding the STAR TPC

•requires hits on opposite (horizontal) sides of the interaction region

•top and bottom are vetoes, to reject cosmic rays.

Conclusions

•Ratio of J/ Ψ to ρ cross sections for coherent photoproduction accompanied by mutual Coulomb dissociation is measured •Measured ratio is somewhat higher than predicted by Klein-Nystrand model •No other theoretical predictions are currently available for meson production accompanied by mutual Coulomb dissociation

•No significant rapidity dependence in the cross-section ratio is observed

The STAR Collaboration: http://drupal.star.bnl.gov/STAR/presentations

